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The recursive perturbation method given previously by the author is generalized and applied to the
calculation of the energy levels of nuclear shell models. Specifically, we consider a numerically
exactly soluble model of interacting fermions with S U(3) symmetry studied by Li, Klein, and
Dreizler. The method can be obviously extended to the study of more general models with S U(n)

symmetry.

1. INTRODUCTION

A new perturbation method for quantum mechanical
problems was given recently by the author® by which the
successive terms of a perturbation series for the ener-
gies of the system considered are obtained by a set of
algebraic recurrence relations rather than by iterations
or diagrammatic methods as was done traditionally. The
recursive perturbation method, as we shall call it, is

‘not only a powerful method for numerical calculation,
but it also provides a new line of analytical approach to
the study of quantum systems by means of difference
equations. Two types of Hamiltonian were given as ex-
amples in Ref, 1: One consists of the boson operators
an example of which is the Hamiltonian of an anharmonic
oscillator, and the other consists of the spin operators
an example of which is the Hamiltonian of a two-level
nuclear shell model studied by Lipkin, Meshkov, and
Glick.? The extension of the application of the recursive
perturbation method to the calculation of the energy lev-
els of any quantum system the Hamiltonian of which con-
sists of elements of the SU(n) algebras is straight-
forward, ® but it was not explicitly presented. In this
paper, we consider a specific three-level nuclear model
of N interacting fermions with SU(3) symmetry studied
by Li, Klein, and Dreizler,* and we give an expression
for the energies of the “ground-state band” up to the
fourth order terms in the coupling parameters. A re-
currence relation is also given by which the higher order
terms can be quite readily obtained if needed. The ener-
gy series is useful in understanding the variation of the
various levels as N, the number of fermions, increases.
It is, of course, particularly useful when the coupling
parameters are small and when the number of fermions
N is very large which makes the direct numerical diago-
nalization of the Hamiltonian impossible, Previous
studies of the SU(3) model were done with the boson ex-
pansion® and transition-operator boson methods. %7 The
recursive perturbation method bears some resemblance
at first sight to these methods but is in fact quite differ-
ent in details. The extension of the method to the study
of more general models with SU(z) symmetry is
straightforward.

2. THE SU(n) MODEL

The general relation of the symmetric representations
of the U(n) group and some numerically exactly solvable
nuclear shell models was discussed by Okubo. ® Suppose
we have » single-particle levels (or shells) with ener-
gies €,(1=1,2,...,n) each of which is N-fold degener-
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ate. Let ¢,, and a}, (p=1,2,...,N, u=1,2,...,n) be
the annihilation and creation operators of a nucleon in
a state given by quantum numbers p and p. The Hamil-~
tonian of the nucleus will be written as

Y e
H= i) Cullyy Oy
u=zlp=l

+Z‘,7\ajaassa;“aw, 2.1)
where A is a coupling parameter which depends on all
quantum numbers 7, s, p, q,o, B, &, and v. The form
(2.1) is too complicated to solve and in the usual ap-
proximation one selects only the terms with »=s and
p=gq, namely we consider a Hamiltonian of the form

n N n N
H=2 Ze,ab,a,+ 2 2 Neda dla,,. (2.2)
pal pel #,v, @, Bl p, 321
If we set
N
Gl“,‘:Ea;,,aw, (2.3)
p=1
then, using the commutation relations
{apu’ azv}= 6pq6uv’
{apu’ aqv}={a;u, a;u} = 0’ (2' 4)
the Hamiltonian (2.2) can be written as
n n
H=2€,G:+ 2 M‘2GIGE, (2.5)
u=l B,v, o, B=1
where G} satisfy the commutation relation
[G¥, Ggl=04G2 - 82GY (2.6)

and are generators of the U(xn) algebra which becomes
the SU(n) algebra if the particle number N is conserved.
The ground -state band corresponds to the most sym-
metric representation of the SU(n) group with signature
(N,0,0,...,0). The case n=2 is the model of Lipkin,
Meshkov, and Glick® while the case n=3 is the model
studied by Li, Klein, and Dreizler.*

3. THE RECURSIVE PERTURBATION METHOD

The recursive perturbation method formulated by the
author! consists essentially of three steps: )

(1) Use the Bargmann analytic function representation.®

(2) At each stage (order) of the perturbation calcula-
tion, the eigenfunction is taken to be a power series con-~
sisting of a finite number of terms, thus only a finite
number of unknown coefficients to be determined (the
number being dependent on the order of the perturbation
term being calculated and on the form of the perturbing
Hamiltonian).
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(3) The unknown coefficients are determined recur -
sively in terms of the known coefficients of the previous
orders by comparing coefficients of the like powers of
the expansion variabies.

The Bargmann representation of the boson and spin
operators are given by the following:

at— z, (3.1a)

a5, (3. 1b)

St— zqz-;, (3.1¢)

5 — za—a—i—:, (3.1d)
and

St~ 3 (zfé%; - zz-é—z—z-), (3.1e)

where the 2’ s (except the superscript appearing in §*
which denotes the z component) are arbitrary complex
variables. The representation (3. 1a) and (3. 1b) was

in fact used many years ago by Fock!® and the represen-
tation (3.1c), (3.1d), and (3. 1le) was obtained from the
Schwinger representation! of angular momentum

St alaz,‘

5 — agau

¢~ 3(aja, - aja,)
by replacing the boson operators in {3.2) by z and 3/0z
according to Eq. (3.1a) and (3. 1b). One of the advantages
of the Bargmann analytic function representation is the
simplicity of the form of the eigenfunctions.?® Moreover,

it provides a unified and systematic way of treating the
boson operators and generators of SU(n) algebras.

For a Hamiltonian consisting of the boson operators,
the energy equation in the Bargmann representation is

(2, 2)e) =EAC2), (5.9
where
f2)=2J ¢ 2%, - (3.9
550

and for a Hamiltonian consisting of the spin operators,
the energy equation in the Bargmann representation is

2 bl &} ]
H(%(Zxa—z:—za@) » Zapm 225;1))’(21,22)=Ef(2u22)»
(3.5)

where

flzy, 2,)= E ¢, 2535 0z8, (3.6)

and [S(S +1)]/2 is the total spin. More generally, for a
Hamiltonian consisting of generators of an SU(») algebra,
the generators G», u,v=1,2,...,n, may be represent-
ed by

Gl =z, —

"az ’ (3.7

u,v:l,Z,...,n

with the eigenfunction of the Hamiltonian in the most
symmetric representation being represented by
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N
Tn )= B Cnynny s (3.9)
1resey fn*

Suppose now the Hamiltonian H can be written as the
sum of H,, the unperturbed part and $in, A H{*, the per-
turbing part, where 7, is equal to 2(3) in general and is
equal to (}) if all the A’s are real, then we write, for
the eigenvalue of H,

ix -3 (x)
E®0,. N )= L A s M X, (3.9)
pl,.o.,ﬁ,nxo
and for the eigenfunction of H,
M0y e 2y 2)= 2L BIE
Blyoess bp,=0
X(Zygaesy B A0 0 e Atn, {3.10)

where {K} denotes a set of quantum numbers designating
a particular unperturbed energy level considered. The
crucial step of the recursive perturbation method (a step
which also makes the recursive perturbation method dis-
tinctive from the other perturbation methods) is to let
;LN CHN z,,) be a finite linear combination of
powers of z,...,2,. If the highest powers of z, and 3/
9z, in H, are P, and @, respectively, it follows from Ref.
1 that by letting

B“ﬂ oty (24,...,2,)

RS S s e

posay Prreoss Py, 31,0004
j]}"QlP jﬂ-1= Q"-]_P ¥ # Pyt J1s rvn

3.11)

where the prime in the summation denotes the exclusion
of the term jy=-++=j,,=0and where p=p,+p,+-+-+p,,

Go=={(jy++-++j,,), substitutions of (3,11) and (3.9) into
the eigenvalue equation for H and comparisons of coeffi-
cients of like powers of A’s and z’s will lead us to a set
of recurrence relations by which the coefficients A’s in
(3.9) can be determined recursively in a consistent and
systematic manner. One sees from (3, 11) that as the
order of the perturbation term p increases, the number
of unknowns, b’s, to be determined also increases. But
the b’ s are going to be given in terms of the b’s of the
previous orders, i.e., the b’s are determined recur-
sively and, moreover, the b’s of the same order are
usually determinable individually {i.e., without having
to solve a set of simultaneous equations, say, involving
several or increasing number of the b’s of the same
order). It is also interesting to note that b, .. ., .
becomes zero if one or more of the j’ s has absolute val~-
ue greater than N [the easiest way to see this is to con-
struct a simple example and then deduce the general
case by deduction; see Ref. 1 and the recurrence rela~
tion for the SU(3) model in the following section], and
thus the powers of the expansion parameters z’s are
automatically restricted fo the range -~ N<j;, <N,
i=1,2,...,n.

xzi&. “Z":ﬂ,

4. THE SU(3) MODEL

In this section, we apply the recursive perturbation
method to the study of a specific SU(8) model considered
by Li, Klein, and Dreizler.* The model assumes three
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N-fold degenerate single-particle shells with energies
€, €, and €¢; and the Hamiltonian of the model is assum-~
ed to be

H= E €6t 2 (G3s +G3,) +2,(G, + G%) +24(GE; +G3y),
pel
(4.1)

where the two-body interactions A, A,, and A, existing
between shells are assumed to be real, and the opera-
tors G’s are given by

N

+
G,, =2 ada,,
o1

(4.2)
d', abeing the fermion creation and annihilation opera-
tors. In the Bargmann analytic function representation,

the Hamiltonian is written as

9 3 2 o2 22
H= (elua +62v8 +€3waw>+)\1<v P+w 8_2->

)\(zaz s 92 2 O, 92
+ + + . .
ZMW wW>+>\3(uW UW) (4 3)
Consider an energy level in the ground state band cha-
racterized by the quantum numbers a, b, and ¢
(=N-a-b), i.e., this level has an energy ac, + be, + ce,
in the absence of any interations between shells. The
eigenfunction corresponding to this energy level is
wvbw°, When the interactions are present, let the same
energy level now become

Ao A= 2

P14 92,0320

ke bc()\l’ Aabe

D1 )P\ P3
plpzp)\ AZ2A,

(4.4)

where Aghs ;= ae, +be, + €5, and let the corresponding
eigenfunction now become

fu c()\la 29 >‘3’ u,v, w) = E B(;l'pz p3(u, U, u)))\{’-lé@\?
£14 92,0320
=By olu,v,w) 2 B, (u, v, wNIMENS,  (4.5)
p1, b2, 0320

where B3 o(u, v, w)=

b.
woPwe, B o
p=1,

(u,v,w)=1 and, for

(uvw)—z Z'f

i==2p j="2p

ig1Fapk
Pl Pz o3 Pl,Pz:P:;,l,] g UW5, (4-6)

where p=p, +p, +p,, k=-i—j and the prime in the sum-
mation denotes the exclusion of the term i =j=0. The
coefficients A’s and b’ s are the coefficients to be deter-

mined and the crucial part of the recursive perturbation
method for this problem is expressed by Eq. (4.6). With

aZ
w? _B.FB;’I’f o, 25ty ¥, )
b 2,,-2 1 8 Gl
=utvdwe (b(b — 1)uv +2bu V" a—- +22 6—2-
Xﬁ“p:fpz’%(u,v,w) (4.7)
and similar expressions for v2(82/ auz)B';:sz' F.3(u, v, w),

u?(8?/ dw*)Byle,, ».(u, v, w), ete., we get, by substitutions
into the energy equation and comparisons of the coeffi-
cients of Aiaf2ls,

0 2 2
APiNL2A 03 — € +e€
pl,zt:;,pa 1 [<€u6 Py 3w3w)
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)
><ﬁ';1p2 p(u v, w)+<c(c-1)vw +2cv?w™ e

82
+v a—a,+b(b 1)v72w® +2b0™! 2;—+w 'a—-g)

- 4 0
xﬁgfelv% Pa(u’ v, W)+ (c(c = 1)2w™? + 2c1Pw 150—

ou ou®
_ 4 0
xﬁ“p:fpz_l’%(u, v, w)+ (b(b - 1)y + 2buv 1-8—1}

02 2 92
+u2W+a(a—1)u2w +2au w?— + u? )

22 2 02
+u2-a-’7§+a(a—1)u'2 V% + 2au v a—+v E

X By eog, py1 (s s w)]

- 7\?1)\1’2)\!’3 g i 5 Agbe

Py7a1s P27a2, P3703
ﬁ1,1’2:1’3 )

X By o as(tl U, ),

q11:22,493

q170 ¢9a0 ¢gs0

where the star in the summation denotes the exclusion
of the term ¢, =p,, ¢,=p,, and q,=p, simultaneously.
Comparing the coefficients of like powers of #, v, and
w on both sides, we obtain the following recurrence re-
lation by which the A’ g can be obtained readily by re-
cursion (omitting the superscripts a, b, and c for
convenience):
(i, + je, + k€3)bp1,p2,p3; i ik
+a+i+1)a+i+2)

X (bPl,Pz'l,Pg; o2, 502 T bpl, o, p3713 42, j"2,k)

+(b+i+1Nb+5+2)

X (bpl-l,pz,ps; i, §+2, p=2 +b
+(c+k+1)(c+R+2)

P11 P2, P3715 172, j42, k)

x(b

171, 05, P33 1, 72, k42 + bP]_, bo=l, P35 172, §, k"2)

5 P2 x
= i i i Aol'al,ﬁg'ag,ﬁg'%bal,az,q3:i, ik (4'8)
0170 q5=0 q3=0
with b5 00,4, 5,2 = %0400 00, and Dayrazmasiind, L=01if 121, 1jl,
or |kl is greater than 2(q, + g, + q,) or if one or more of
the ¢’ s is negative [see Eq. (4.6)]. Using (4.8), we
readily find:

p=1, A‘i 5 o=4% fOZA?),bSJ:O'

p=2’
2(€ — ){(b +1){b +2)c(c - 1)
-(c+1)c +2)b(b—1)},

AR?5 o is obtained from A3’ , by changing €, €,, €,— €,
€5— 61 and a— b, b— ¢, and c— a, and Ag,bg . is obtamed
from AgPS o by the same permutation,
— . b —_
AP o= A8 1 =AgY =0,

p=3,
Age  =(a+1)a+2)(b +1)(b +2)(c - 1)c/
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2(e; —€)e; —€,) + (a+D{a+2){d - 1)b{c +1){c +2)/
2(e, ~€,)(e, ~€)) +(a=1)a(b +1)(b +2)(c + 1)(c +2)/
2(¢, = €;)(€, —€5) +(a =1)a(b -~ 1)b(c +1)(c +2)/
2(e; ~€,)(€5 —€;) +(a = Da(d +1)(b +2)(c - 1)c/
2(e, ~ e, e, —€) +(a+ 1{a+2)(b - 1)b(c = 1)c/
2(e, —€,)(e, ~¢€,),

4325 9= A5 o=+ =0,

Agdg = Aog =+ =0,

j):4
Asbf o:Aabg 0—A1 0,3=""° =0,
(B+1)(b+2)c(c-1) [2
8(e; —¢€,)°
—(B+1)(® +2)(c - 1)c + (b —1b(c +1)c +2)]
_{e+1)(c +2)b(b - 1)[ .
8(c, —€,)°
—(c+D(c+2) D -1 +(c-1)ec(d+1)d +2)];
Aghs o and A5 , are obtained from AY§ , by permuting ¢,
€, €5, and a, b, c;
_(a+1)(a+2)c(c ~ 1)((b Db(c =1
8(6 ""61) (G —61)(6 _61)
(b Db(c +1)(c +2)
(€, =€) (€5 —€5)
(c +1)(c +2)b(b ~ 1))
(€5 —€,)(e, —€,)
(__ (a=1)alc -1)c + (a=-Dalc+1)(c+2)
(€ —€)(€; -€,) (E —e)eg~€)
(a +1)a+2)c(c -1) + (c +1){c +2)ala - 1))
(e, —¢)(e; —¢,) (€, =€, €5 =€)
_(e+1)(c+2)(b-1)b ((a +1)(a+2)(c~1)c
8(e; —¢,) (6, —€)(e5 =€)
(a + 1) {a+2)(c +1)(c +2) (a +1)a +2)c(c - 1)
(6 —61)(F —-62) (€ _51)(6 "Ez)
(c +1)(c +2)a(a - 1)) _(e+D(c +2)afa=1)
(e, —€,)(€5—¢,) 8(eg —€,)
( B +1(b+2)c -1)c + (b+1)(b+2)c+1)(c+2)
YE "'61)(6 —62) (€ _61)(6 -61)
(b +1)(b +2)c(c -1) (c +1){(c +2)b(b - 1))
0= ey =) o)) )’

AgPs , and Ag’5 » are obtained from Agbe 0 by permuting ¢,,
62, e and a, b c. By letting €, = —¢, =3¢, €,=0, A, =2,
=0, As_x (A, denotes the interaction between levels 1
and 2), ¢=0and b=N ~qa, we obtain the corresponding
result for the SU(2) model studied by Lipkin, Meshkov,
and Glick? for which the Hamiltonian is assumed to be

H=eS*+1(S*? +57%), (4.9)
Thus, for the ath energy level, the energy is given by

Aabe

400

30 +3)(0 +4)(c — 2)(c -3)

3(c +3)c +4)(b - 2)(b =3)

Agde o=
_(b+1)(b+2)e(c ~1)
(€5 ~€,)(€;—€))

(b +1)(b +2)c(c - 1)
8(e, —€,)

Ee(A) =2 AN,

p=0

(4.10)

where
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A3= (- 1N +a),
=Al=Ai=...=0,
At =(1/26)[((N-=a+1) (N -a+2)ala-1)
—~(a+1)(a+2}N -a)(N-a-1)],
=(1/1663)(N=a+1)(N - a+2)ala-1)
X[(N-a+3)N=-a+4)a-2)a~-3)
~2(N=a+1)(N=a+2)ala-1)
+2(a+1)(a+2)(N - a){(N-a-1)]
-(1/16e%)(a+ (a+2)(N -~ a){N =a-1)
x[(a+3)(a+4)(N ~a-2)(N-a-3)
=2(a+1)(a+2)N=-a)(N=a-1)
+2(N=a+1)(N=a+2)ala-1)].
Thus, the energy of the first state above the ground
level is given by
EYA) ~ E*(A) =€ = (2/€)(N = 1){(N - 3)a2
= (2/e3)(N = 1)(N = 3)(N? = 16N +27)r*
+eee, (4.11)

which is the result given by Lipkin, Meshkov, and Glick.
More generally, the coefficients A’s may be obtained
from the following recurrence relation:

€b,,, .+ (N=a=j+1)N=a=j+2)b,, s -2
+(@a+j+1)a+j+2)

_%A b

bl - B}

p71; 442, = -2
(4.12)

with bo;j,_jzﬁo,j, b,, ;,-;=0 for |jl >2p.

5. SUMMARY

We have generalized the recursive perturbation meth-
od and have demonstrated how it can be applied to the
perturbation calculation of the energies of nuclear shell
models with SU(n) symmetry. Specifically, we have cal-
culated the energies of the ground state band of the SU(3)
model studied by Li, Klein, and Dreizler up to the fourth
order terms in the coupling parameters. We have also
presented a simple recurrence relation (4. 8) by which
the higher order terms can be quite readily computed
if needed. The recursive perturbation method is a
powerful numerical method particularly suited for the
computer, and we feel that it will certainly find applica-
tion in many other problems in physics. 12
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Local bounded perturbations of an infinite equilibrium state are studied in the C*-algebraic
framework. It is assumed that for the unperturbed state the pressure exists in the thermodynamic
limit and that the Dubin-Sewell hypotheses are fulfilled. The following is then shown: At constant
temperature the perturbed state is analytic in the perturbation @, the infinite volume pressure does
not depend on @, and the new state is KMS with respect to the time evolution corresponding to the

adiabatic perturbation, as treated in a previous paper.

1. INTRODUCTION AND MAIN RESULTS

The isothermal response of a macroscopic system
S to a local perturbation @ has been extensively studied.
Recently some results have been obtained. It has been
shownl that if the macroscopic system is represented
by a density matrix in a Hilbert space and the local
perturbation is determined by a self-adjoint bounded
operator @, then the perturbed matrix (at constant tem-
perature) is analytic in @ (i.e., in the perturbation
strength) and the pertubative series has been explica-
ted.

This provides the necessary tools for the perturba-
tive study of the corresponding state on the C*-algebra
of the system observables2. Finally,the convergence of
"real and complex time" correlations functions for
KMS states has been proved in Refs.3 and 4.

In this paper we study the perturbative expansion
directly in the thermodynamic limit. For this purpose,
we define the infinite equilibrium state as a positive
functional on a C*-algebra obtained as the norm closure
of the C*-algebras of the bounded regions and we study
the dependence on the local perturbation @. We assume
for technical reasons that @ is described by a bounded
operator. This is not a loss of generality if lattice
spaces or hard-core particles are considered, while the
‘case of continuous particles with unbounded perturba-
tion requires an ad hoc treatment.

The hypotheses we use in this paper concern the be-
havior of the unperturbed time correlation functions in
the thermodynamic limit. We assume the existence of
the infinite volume pressure and that the Dubin and
Sewell conditions® are fulfilled. This assures the ex-
istence of dynamics in the Hilbert space in which the
unperturbed equilibrium state is represented by a vec-
tor via the GNS construction.

The results we then obtain can be summarized as
follows:

The perturbed state exists in the thermodynamic limit
and can be implemented by a density matrix in the GNS
space of the unperturbed state. The state, furthermore,
is analytic in @. This fact could play an important role
in the study of the time relaxation of the adiabatically
perturbed infinite state which in the remote past was in
equilibrium for the unperturbed evolution. Analyticity
was an hypothesis in a previous work® in which the
above problem appeared as the approach to equilibrium
of a spin in a thermostat. There it was proved that the
first terms (in Q) of the adiabatic response correctly
approached the isothermal ones, under suitable hypoth-
eses on the kernel of the master equation describing the
time evolution.
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The perturbed state verifies the Dubin-Sewell con-
ditions w.r.t. the perturbed time correlations functions,
so that it is KMS.

It is shown that the time evolution corresponding to
the perturbed state via the Tomita theorem? is the
same as the one we introduced in a previous paper$
when the adiabatic perturbation was considered.

The perturbed pressure exists in the thermodynamic
limit and does not depend on @.

2. MATHEMATICAL FRAMEWORK AND NOTATIONS
Notations

(a) We employ the standard symbols C,R,R, ,Z,Z,,10
denote the complex plane, the real line, the positive
reals, the integers, the positive integers.

(b) Let Abe aC*-algebra? with identity. We denote by
A*,A ¥ the set of all continuous and the set of all positive
continous functionals on % . We denote by S(%), the set of
the states on ¥ ,1i.e.,

S@) ={peul, v =1}

Sometimes we denote Y(4), ¥ € A*, A €%, by the sym-
bol (y;A). We denote by the symbol %, the »-ball of ¥,
i.e.,

%, = {4 e¥; A<~}
(c) Let9%be aC*-algebra with identity,y € S(%).

Let (9,;7,;Q,) be the GNS triple induced by y. We
denote by ¥, the extension of y to 7,(%)", defined by
P() = @, () Q). @.1)

We denote by % x() the set of all ultraweakly con-
tinuous functionals w.r.t.the 7, representation space:

deA W) = o= dom,. (2.2)
We denote by ${y,4) the island of y:
S, ) = {p € S(W): p= gom,}- (2.3)

Definition 2.1: Let ¢ be a state on% . Let 7, be an
homorphism of the real line into Aut¥. Let 8 € R*; we
say that & satisfies the KMS conditions10;11 corres-
ponding to (7, ,B) if VA, B €% , 3 functions f 45,845 ON
the complex plane C, such that:

i) Fa() =< ¢,(1, A)B> g,5(f) =< ¢, B(1,A) >,
VA,Be , VicR.
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(i1}  faplgap] is analytic in the strip Imz € {8, 0}
[Imz {0, 8}] and continuous on its boundaries.

(iii) fap(2) =g45 +iB), VzeC.

Mathematical framework

In the algebraic formulation of statistical mechanics
10,12 one considers the physical space T (i.e., RV for
continuous particles or Z* for spin systems) of a sys-
tem S and the set L = {A} of the bounded regions in which
S can be confined. To each A € L the algebra of obser-
vables is represented by a type 1 factor U , of opera-
tors in a Hilbert space .. This will be referred to as
the 9 ; representation of the algebra. One further
supposes that the algebras 11, are isotonic, that is if
A,AMeLand A’D Athen 1 ,,D11,.

Let, = ,Y 1, and % be the norm closure of Il ;

A=Y

AL, 2.4)

Thus % is a C*-algebra (with identity), and it is term-
ed the algebra of quasilocal observables for the system.
A state of S may be represented by a state on % . To
define a Gibbs state for 5, one considers an increasing
sequence {An},An € L,suchthat UA, =T;n € Z,. For
each A,, one supposes the existeifce of two self -adjoint
operators in 9 p, , H o), and N (), corresponding to the
Hamiltonian and particle number for a system 5 (=)
occupying A, and subject to prescribed boundary con-
ditions. If for every n € Z, the operator H(® = H () —
uN( (u is the chemical potential), is self-adjoint and
lower bounded, and if the operator exp(— gH (»)} is of
trace-class on 11, for g€ R, it may be defined a state
¢ My, onit, by”

(¢, ;A) ={Tr, exp(— H™)}1

x {Tr, [exp(—BH)]A}, VAeu, . (25

It linmcp(")B,M(A) exists VA € 11 ; then,since 1l ; is
norm dense in a %, the limit defines a state ¢, , on %A
that is named a Gibbs state for S:

(2.6)

(¢B,u ;A) = li'}n (¢(ﬂ)ﬁ,'J ;A), VA € 1,.

(See Ref. 13.) The thermodynamic potentials are, on the
other hand studied by means of the partition function;
we also consider the possibility that the thermodyna-
mic limit exists for the sequence | A, |1 In[Tr,

exp(— BH(m)]. The limit (2. 6) defines a state which is
locally normal w.r.t.the 9 representation,i.e.,

o, = ¢l u, € [7 5 (M) "], 2.7

where 7, is the $  representation for % .

In order to consider time translations, one defines

Tt(n)tql uA '_)u’ n e Z+, (20 8)
n

where 7,(#) is an homomorphism of the real line into
Aut %:

T,AMA = UGXEAU Y— t) = A ()t), 2.9)
UGt) = exp(iH t). (2.10)

To define time translations in the thermodynamical
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limit, Dubin and Sewell> made the following assumptions:

D.S.1.
Lm (¢ @5 A, M(ty) - AW(E, ) exists V A4, €1,
ke 7., ly+-tyeRr, (2.11)

D.S.II
limm li'{n (¢(n);A1(n)(t1). . .Ak(n)(tk)

XA, (tyey) CAGR L (F N

=Um{p A, (¢t ) - AM) (¢4, D)
VA]_”.Ak"'sE llL, k,se Z,,
by lps € R, (2.12)

We report below their main results.

(i) There exists a Gibbs state ¢, locally normal w.r.t.
the Fock representation, and an homomorphism 7, of the
real line into Aut. 7 ( % )", such that

Lim (¢ )4, 0(e) A0 (¢ )
={¢; Ty TolA) Ty, oA o),

VA ...A,el;, ke Z,, t...5,e R, (2.13)

(i) T75(A) = Utm(A)UD), vActu,  (2.14)

U(t) is a unitary strongly continuous operator in 9 » and

(@; 7,14 (A)) = (R ¢, UE)T ,(A) U )2 ¢)

=(Q¢,1,(4)2¢), VAeu, (2.15)

(iii) ¢ is a KMS state w.r.t. (7, B).

Remark 2.1: If ¥ € S(U) is KMS w.r.t. (8, v(£)), it
follows that 9, is both cyclical and separating w.r.t.
7,(A)" @D (see Ref. 7) and ¥ is invariant w.r.t. y(¢). As
a consequence, y(f) is unique, via the Tomita theorem,
and 7,, defined in point (i), is the Tomita automorphism.

In a previous paper38 the consequence of an adiabatic
perturbation of the state ¢,by a local bounded inter-
action @ was studied. The main results for the perturb-
ed state ¢, are

i) ¢, €8(e,%), (2.16)

(ii) A new homomorphism 75(£) (B, 1 depending) of the
real line into Aut7 ,(%)” is defined

Vt € R.

T,)A =U,0)AU,(—1t), VAecn,(%), 2.17)
Up(t) = exp{i[H + 7,(Q))}, (2.18)
where
H= s-tlixgt-l(U(z) —1I). (2.19)
In Eq. (2.16) ¢, can be written as
¢ (A) = ($;7, (), (A)), VAecu, (2.20)

3. ISOTHERMAL PERTURBATION OF &

In this paper we want to study the isothermal per-
turbation of ¢, via a local bounded interaction @ .

Let @ belong to llAn , @ = @ . Let us consider the

0
increasing sequence {A,} above defined, with » > n,. Let
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us consider again the sequence of systems'S(”), with
Hamiltonians H @) = H» + @ and particle numbers
N{#) g0 that the opérators

HM =H@® —uyN® =H®) + @ (3.1)
are self-adjoint and lower bounded. The operators
exp(— gH,™) (3.2)

are of trace class in 9, , V> ny, BER, (see Ref.1).
We can then define the sequence of states

(¢5”;4) ={Tr, exp(~pH ) {Tr, [exp(—pH ") 4},

VAelu, , n>n, (3.3)
Again in order to consider time translations, we
define
7 M (¢): Uy, Uy, YRS mng, (3.4a)

OA = UPOAUM-D, VAeu, , n>n,

(3. 4b)

U Ae) = expliH ™). (3.5)

We also consider the sequence of perturbed functions
(n)
Z,(8, ) = Tr, exp(— pH ™).

Theorem 3.1: Under D.S.I, D.S.II hypotheses [Eqs.
(2.11), (2. 12)] and with the above definitions and as-
sumptions, the following holds:

@ lim¢ " (4) = ¢,(4), VA e,
¢, € $(¢,U).

(i)  for fixed g and u there exists an unigue homo-
morphism of the real line into 7 %(91) such that

(n) ~

(3.6)

(3.7
where

tim (9, A1) AR = By b, 1)mg (A)
v (Tp(tk)fr%(Ak))), YAy Azen,, ke z,,
Lyt € R, (3.8)
where

Ty (4) = U, (01, (AU, (1), YAEU,, (3.9)

U,(t) = expli[H + 7 (@)}, (3.10)
H = s-Uim(U() — Dt (3.11)
e d

(iii) @, is KMS w.r.t. (8, 7,()).

In order to prove Theorem (3.1) we have fo enunciate
some lemmas.

Remark 3.1: Let $ be an Hilbert space. Let
B(H), B, (D) be the sets of all bounded operators and of
all trace-class operators on 9, respectively. 8 ,(9) is a
closed space w.r.t.the norm | || ; defined by
(3.12)

oty = Trb(p*p)*, Vp € B,(9).

8,(9) is isomorphic to the norm closure of the strongly

continuous functionals on B () [w.r.t. the norm of B(H)*].

We shall sometimes denote with the same symbol the
image of p in B(H)*.

Lemma 3. 1: Let @,H,be self-adjoint operators on
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a Hilbert space § and let @ € 8(9). Further,let S{o,H),
S(a,H + Q) € 8,(9), Va € R, , where

S{a,H) = exp(— aH); Sla,H + Q) = exp[— a(H + Q)]

(3.13)
Then it follows that:
G  Sla;H +Q) = °Z°;os,9 (e, H) 3.14)
with "
S§ (a,H) = S(a, H), (3.15)
S9(a, H) = [, dS§ (@ — 7, H)QSL (T, H).  (3.16)

The convergence in Eq. (3. 14) is w.r.t.the norm |||,
defined in Eq. (3.12),Va €R, . The n integrals in Eq.
{(3.15) are defined as strongly Bochner.14

(i) VA <8(9):
o0 a T T g o
Try[AS(a, H + Q)] = Z,:Ofo ary jold"z"' Jo ldTn

x Tr, [AS(a—7,, H)QS(Ty—7,, H) - QS(7, , H)]. {3.17)
The proof of the lemma can be found in Ref. 1.

Lemma 3.2: Let us consider the operators
exp(— BH ()} = S(8, H ) defined in Sec. 2.

For each k € Z, we define the domains D, in C*
., 2,) € Cki— p<Imz; <---<Imz,<0}.
(3.18)
Then VA -+ A€ U, , (2y,...,2;) € D, the operators
S apesy =SB = TLHMA ) 4,00,)
x S(ry, HM) e 8,(9, ) .19

Dr =F {(zp ..

with
7;=1Imz;, t; =Rez;, AWMW(,) = 7‘(3'”)‘43' (3.20)
Proof: It follows from the following equation3

" SAI...Akzl...zk“ 1 25‘3‘2[ tTrusﬁ(:‘.),.A‘kzl...z*A I
< BAN. L AN HS(B, H@) . (3.21)

Definition 3.1: For every A,...4, € uA”,
{z4...2,} € D, let us define the functionals

(n)
ll/Al...Akzl...zk(B)

= {Tr, S(BHON T, SO 4., B,

VBE U, . (3.22)
(n)
By Lemma 3.2 ‘Pf,--.akelmzke (1,,), and
()

Hlp;l"'Akzl"'zk”(uAn)* < [lAqlh -« fla,lh. (3.23)

We point out that
(n) (n)
‘P:l...Akzl...zk(I) = ‘PA’:...Akzl+z,zz+z...zk-z(n7
Vz eC. (3.24)

So that ng"x) Akzr"zk(l) defines the complex functions

FP a2y, VAL A, ,
{z,...2,} € D, D D, where

D, = {(z4...2,) € C*: Imz, < Imz,

oo <Imz,<Imzq + 8. (8.25)
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Remark 3.2: The unperturbed states ¢ (*) are KMS
w.r.t. (8, 7). Then the complex functions defined by
Eq.(3.24)

(n) (n)
Fn Ak(zl 2y) = :1...Akzl...zk(1)’
VA ..A,e U, ,z,...2,€ Djke 2, (3. 26)
n
have the following properties:
. {(n) _ n)
@ Fa .. .a(z1.. < Zp) = Fag..a4a . .4,
X (Zgve 2p,2545B . 254 HiB) (3.27)

(ii) F(”) (z

domain :Dk and are continuous on its boundary. For
Imz, =...=Imz Imz}+1 =...=Imz,=1Imz + 8

they have the values ¢ ™ (Aﬂ(tﬂ) CAE A -
A]_(u)(tj .

(iii) F,({:) 4,71+ .. 2;) are analytic functions of

s < kfor {z,...2,} € D} such that

. 2,) are analytic functions in the

ZyeaiBg,
o
2470+ 2,€D; and Imzg ,=--

::Imzk<1mzl+ﬁ or

Imz g, =~ =Imz, = Imz, + B. (3.28)
For instance,by Eq. (3. 24),
;n) IR PUNSE “rly)
F(") aB1 2z 2yt ),
Vze C, tgq-l,eR (3.29)
and the functions F( ) Ak(zl. .2 q...4;) are ana-

Iyticinz;-- -2 if

Im(z, +2)<--. <Im(z, + 2) <Imz <Imzq + 2) +B;
that is, (3.30)
- B <Imz, <+ <Imzg<0. (3.31)

Remark 3.3: With the above notations we can write
for every A € U, , n>ng

o5 4) = {Tr, S(8,H @)} {Tr, S(8, H, )}
A{Tr, S(8, H)} 1 {Tr,S(p, HyV)A} |
o0 8 T "
= ;E fo dry fo ‘3/;;, (-:'n),...,(-im)(l)s'l

(9,

%2 f ary... { dTh ‘Pho CiTy ven ,EiTy) (A)zs
(3.32)
where 7@ means @... Q@ h-times.

Lemma 3.3: Under D.S.I, D.S.IT hypotheses, it
follows that:
s (n) .
(1) llmi]/ i:zy-«zk(B) - z’(/Al...AJ,‘,zl...zk(B)’

VAI...A,,E W;, 24...2,€D,, ke 2,

(3. 33)

with z4...2,€¢ D, 0 <5

The limit uniform in z,...z, on the compact sets
in the domain D, and the limiting functions

¥a

<k se 2,

,u-ﬁkzl...zk(B):FA,...AkB(Zr"ZkO) (3.34)
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are analytic in D, continuous on its boundaries, and
satisfy the KMS conditions:

F 24...2,0) = F
Al...AkB( 1 £0) Ap.. ABA A,

(2p+..2,0270;B...2, 4 +iB). (3.35)

(ii) The boundary value of FAl;__AkB(zl. .. 2,0) for

Imzy =... =Imz; =~ B,Imz;y = ... =Imz,= 0
is the function
(Q(Ds (Tj+1(tj+1)ﬂg> (Aj+1))' e (E) - (th”¢(Aj))Q¢)’
(3.36)

where {; = Rez; and Q,,7,, 7, are defined in Sec. 2.

() Ya,z, € Tl (3.37)

The proof can be found in Ref. 3. With regards to points
(ii) and (iii} we report the integral representation for

(n) ‘
A a,a5a,(2122030 DF A a, a4 (212205t )f (22— 24)

.., I N RS () B
X f24) = 41;£°° dtt—zz-&zl

(f at’ f(t)2

x AP, ey — [

(pmia, A )AL 5 +17)

dt' f(t +zB)
"+ i+ 24

AP, + AP ¢, + t’)AIAz(t)))*—

(i

t+2z4

(o
1
2

© g fe—t" +ip)fB —1)
t— i~ 25

x{p @A OAY )A€ AP )

- ar HE=0IE 0 g 40000
Lo - Zg

x APe)A7 ¢, . (3.38)

In Eq. (3. 38) f(£) is an analytic nonzero function de-
creasing sufficiently fast as |Re&| — « for 0 < Im¢ < 3.

By the Lebesgue theorem the lim can be performed
before the integrals in Eq. 3. 38, which exists for D.S.I
For point (iii) it is sufficient to cons1der9

Aye m)”, ALl <lve,  silim A, =A.

The integral representation (3. 38) is still valid in the
thermodynamic limit and agam Lebesgue theorem
applies. In fact hmzp A, (Am) can be per-
formed inside thé' mtegrals and ' ’

limm (a; (Tgl'”(p(Al))" T t, 7o (Ap) Ay

=G (7, 7oA (T, 16 (A)B).

Remark 3.4: By Lemma 3.3 the following limits
exist:

im 487 g, e, B €0 B L)),
VAl.. A By...B e, 2z
t...t, €R, k,seZ,.

< Z2,€ Dy,
(3.39)

Lemma 3.4: Let us consider the operator & (m ()
(= I
n

Am@)=r"0A=U,"0AuM~1), vAeu Ay LER.
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It follows that
(n)

UMy L 4, 4...0,AP0)
—tim > [fa, [Ma g
- N 730 Y0 1 2 0 t}l
Umy L L @@ ) g ) AW E)
(3. 40)
In Eq. (3.40) 0 (1): R — B(11, ) as
QWA =i@we),A]l, vAen, . (3.41)

Proof: AMm() = (") (£)A, may be expressed in
terms of 7 ")A by the mteractmn representation
formulal$

N
t
o4 linth}O [ dty. f Lty Sty . Y ) TVA:
>

(3. 42)

The integrals in Eq. (3. 42) are strong limits of
Riemann sums. The norm of the summand is majorized
by Al 2l Qll 1£]1%/k!). Then A (»(t) may be expressed
as strong limit of a sequence of elements of Il , 20 Ua,
is a Von Neumann Algebra, therefore strongly closed
e Alhgz.. .z is strongly continuous in any bounded

reglon of U A, At last,the sequence

lgnZ) [oat,. --f" AW A,
x(n‘"’(t,,) n‘”’(t1>A<t» (3. 43)

is uniformly convergent w.r.t. ». [the summand is major-
ized in modulo by [|A[<ll---l 4, 1@}l £1*)/mY)].

Remark 3.5: We point out that the terms in the
sequence (3.42) are in the ball of radius
r < Al exp@-1Q1 - [¢1).

Furthermore, the product of operators belonging to
the unit ball is continuous in the weak topology.?

Now we can express the product By(f1)- - - B,(f;),as a
product of k sequences of Eq. (3.42) type. Every ele-
ment of this product is in the ball of radius
¥ < Ce2:11QU-IT with C = || Byl -l B,

T=1lt,]+- +|tKI It follows that

lim ‘P(n) A (B(n)(t1)"'§s(n)(ts))

kZ

ot

= lim.. hmZ) Z} j df,... f n dty, -
M s up0 kGO
?}s's_l i . @) (F"
Jo® s, imva  age..o,0@ @)

g DB )G )Y GBI,

Aje  ABL . B EN Y, 29,2, € Dy, (1...t,€R,
(3. 44)
Remark 3.6: Let us introduce the notations

L L 8 T, Th
%2) (B, 71...7,) E’g) fo dr, Jol dr,. . .fo" 'dr,, (3.45)

5 [t h e 3. 46)
Dbyt =2 fodey [ dtpe . [T a3
R0 h20
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Then we can write
lim lim {5 BV (). .. BV W)BED (Lhuy) - B (e o)
— 13 (n) .
= lim lim _<1Lth£0 (8, Tiees Th)wh-Q-iTl.-.—ifn(I)) 1
L
x(limhz))o (B, 7y...7,) lim N,... N,
L . R Ngss
I T M T Lyyo,tEos, . ERS).
xhzz)o( 1501 hl) hK+Zs;>°( resoly hed)
() )
X lps:‘g ir, (TI ) (t )- T/ ) > (tl)B(")(tl)
ns’ahk). o) BRI G Erely): - n§P (E5e)
SR NC{OWVERE pal(F ot ‘g’(t‘frs)B;'f:(tk*s)).
(3.47)
We note that
N
lim ZJ (BTy...7,) lim ¥ (...)...
L hzg NjeeaNp, o 120
k+s
X 3 (tyese - )W, [2s in Eq. (3. 47)]|
Bpss>0

< exp(Bll Q). exp[21l QI (¢, | + ... +1t4.,1)]. (3.48)

That is the limits (3.48) are uniform w.r.t.n,m. It
follows

L
lim lim{as in Eq. 3. 47} = [(lim 2 (87,--'7,)
mon L k>0

L
xlim @ (1)L lim 2 (871y...7,)
” e L k30

N Nk+s
x lm 37 @...) 2 (tpes..) lim limy @
Ny...Npps B30 hp, 20 mooR e

(as in Eq. (3. 47))). (3. 49)

Proof of the theorem 3.1: Under D.S.I, D.S.II hy-
potheses, Lemma (3. 3) shows that the limits in Eq.
(3.47) can be performed. It follows that:

(i) 11m(¢(") A,lt)- cAy(t,)) existsVA ... A, U,

ti--.t,€R, ke z,. (3.50)

(i)  lim lim (qb(") ﬁ(n)(t A(")(t )A(k”:)l(tlﬁl)

X ) (L oD
= lim <¢>(’" A(’" () - A%,

VA -
s

cAps € n,

by by €V R, SE 2y, (3.51)

Then the D.S. results are valid for the perturbed
state ¢,. Now we have only to prove that ¢, (the limit
of ¢{")), belongs to 5(¢,%), and that U, (t) =exp
{i[# + 7@t} H = lim £-2[U() — I]. By Eq.(3.49),we
see that

[ele] 8 Th-1
¢,(4) = ChZ;O fo d71"'f0 ATy Y. g-inyeri-iny (A),

vAeu, (3.52)

X B8 -
c=x [ d-rl"'f;h . (3.53)

5 dTh‘Ph.Q-irl...—ifh(I)'

We know that ‘;hQ-in---ﬂh’ i.e.,the extension of

¥k @-in...-1, belongs to (7 ,(A)" ).
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But
Whguiuwmin, (A < Him Wy iy (A) < TQIB-TA
VA €1,
by Eq. (3.31). It follows that ¢, is a norm limit of ele-
ments of (7,(2A)")x w.r.t.the norm of o *.
At the end we see that,
Lim (055 AB M @) = (3,3 74(A)7, ()7 4(B)

ot L3 -
lim go Syt P a3 23 Tob AN 5 @E4)
"'Tlﬂ(b(Q)(tl)Ttﬂq,(B)), (3.54)
so that 7,(f) can be written as strong limit of elements
of 74(A)’, in the form,
. N ot tpo1
'rp(t) = s-11nmE fodtl. . 'fo dt, n"os(Q)(th)"'nn¢(e)(t1)7t°

k20
(3.55)

Theorem 3.2: We assume that the hypotheses of
Theorem 3.1 hold and that the infinite volume unper-
turbed pressure exists.

Then the following limit
lim A, 171 In Tr, S(g, D)

exists and it is independent of Q.

Proof: We have

. - (n) . =
lim [A, |~} In Tr, S8, H,") =1lim A, [}
n[Tr”'S(B, H;")

— 7 P 14y 1im|A |1 1In Tr, S(8, H (),
TrnS(ﬁ,H(n)] m 14,172 In Tx, S(6, # )

(3.56)
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By Eq. (3. 21) one obtains

Tr, S(,S,Hg'))
exP—B"QHSW) <exp—gllQl. (3.57)

Therefore, the first term in the L.h.s. of Eq. (3. 56) is
zero for Theorem 3.1 and Eq. (3.57). The existence of
the second term is in the hypotheses of the theorem.

Remark 3.7: Theorem 3.2 shows that the thermo-
dynamic potentials like the pressure, which are additive
in the volume, are uneffected by local perturbations. In
this sense, therefore, the effect of the perturbations
remains localized during an isothermal transformation.
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This is the first paper in a two part series aimed at placing the theory of Wigner’s R matrix on a
mathematically rigorous footing. In Paper I of the series, we will show that the eigenvalue problem
associated with the R matrix can be solved for a large class of potentials, including Coulomb-like
potentials. We will do this for the case in which the boundary of the internal region is a smooth
surface—although the results remain true for a much larger class of surfaces. In Paper II of the
series, we will show that the R matrix exists for the class of potentials mentioned, is a compact
operator, and can be approximated uniformly (i.e., normwise) by the usual expansions associated

with the R matrix.

1. INTRODUCTION
A. Origin of the problem

In a series of papers,1-3 in 1946 and 1947, E.P.
Wigner and L. Eisenbud introduced the concept of the
“reaction matrix” or “R matrix” to calculate cross
sections of nuclear reactions near resonance. The
main object of these calculations was to justify the
Breit-Wigner “one-level formula”4 for the decay of a
compound nucleus using as few assumptions about the
nuclear potential as possible.

The basic idea behind these calculations is really
very simple, although the calculations themselves are
rather complicated. Consider a system of N spinless
particles (spin merely complicates the argument and
adds nothing essentially new) interacting via some
potential V. The configuration space of this system
(E3Y) is divided into two regions: a bounded region I
(the internal region) and its complement, E3¥ — [ (the
external region). The region I is chosen to enclose the
center of mass of the system and physically represents
a region in configuration space where all of the particles
interact via nuclear forces. It we restrict the collision
process to low enough energies, the reaction products
will be a pair of nuclear fragments which are essenti-
ally free when they are far enough apart to be outside of
the internal region. By consistently matching the nor-
mal derivative and the value of the wavefunction on the
surface of the internal region with the same quantities
from the external region, one can obtain the solution to
Schrédinger's equation in the external region and, for
large separation distance, the asymptotic form of the
wavefunction.

The value of the stationary wavefunction of energy E
and its normal derivative on S, the surface of the inter-
nal region, are not, however, independent quantities.
Wigner and Eisenbud heuristically constructed an opera-
tor R(E) which takes the normal derivative of the wave-
function on S into the value of the wavefunction on §. By
specifying different values of the normal derivative, we
get different asymptotic states. Thus, in effect, the
operator R(E), (the R matrix) is supplying the same
information as the collision matrix. In fact, Wigner and
Eisenbud calculated the collision matrix from the R
matrix and, from the collision matrix, the cross section
for the reaction.3

Unfortunately, the derivation and expansions used for
the R matrix were completely formal and, except in the
trivial case of one dimension, it was never proved that
the various expansions converged. Moreover, no con-
ditions were placed on the potential V or the surface S,
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thus leaving the eigenvalue problem itself open to diffi-
culties.

B. Statement of the problem

The eigenvalue problem introduced by Wigner and
Eisenbud in conjunction with the R matrix is a variation
of the Neumann problem. We are required to find a
complete set of orthonormal functions spanning L2(I)
and satisfying the following in I:

9 9
- — A —u, + =

'ZJ) ™y Ay o, u, + Vu,= E,u, (1)
and 2
U
dquy= 2 mAy; —- =0 )

t,7 ]
onS. The A ;; are components of an # X n Hermitian,
positive definite matrix and, in the usual scattering
problem, are constants. If the center of mass has not
been separated out, the matrix is diagonal. On the other
hand, when the center of mass has been separated out,
off-diagonal terms (the so-called Hughes-Eckart or
specific mass corrections5) arise. The n; are compo-
nents of the unit outward normal to S and, finally, V
is some potential.

Roughly speaking, if the surface S, the potential V,
and the matrix A;; (whose elements we allow to depend
on x) are smooth and, in addition, A ;;(x) is uniformly
positive definite, then it is known that the solution to
the eigenvalue problem exists and that the eigenfunc-
tions are smooth and satisfy the boundary conditions
pointwise. 6:7:8 Qur purpose in writing this paper is
twofold: First, we wish to show that the regularity
assumptions on V can be weakened considerably. Se-
cond, we wish to provide a framework for the construc-
tion of the R matrix and the discussion of its properties
which we will give in a followup paper.

This paper is organized as follows: In Sec.II, we
present a short review of the Sobolev theory. This
section is entirely expository and is included for the
convenience of the reader. In Sec.III, using some re-
sults of Schechter,6.® we first give a rigorous dis-
cussion of the eigenvalue problem with V = 0. By using
a theorem of Kato, 10 we then show that the eigenvalue
problem can be solved for a class of potentials which
are “Kato small”5 in comparison to the operator asso-
ciated with ¥V = 0. We then specialize these results to
a class of potentials which we call “ R-admissible.”
This is the natural class of potentials for which the R
matrix is defined. We then give results involving eigen-
function expansions coming from R-admissible poten-
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tials. In an appendix, we show that potentials with
Coulomb-like singularities are R-admissible.

1. SOBOLEV SPACES

For the convenience of the reader, this section will
include a summary of certain results from the theory of
Sobolev spaces.

A. Notation

In all that follows, the symbol I denotes a bounded,
open region of Euclidean n~space, E#», The boundary
(surface) of I, S, is an infinitely differentiable, (n — 1)~
dimensional manifold.11.12 §is orientable and I lies
entirely on one side of S. The inner products in L2(I)
and L2(S) are denoted by ( , ), and ( , )5, respectively;
the norms are denoted by || ||;,and | |5, again, respec-
tively. Inner products are conjugate linear in the left
and linear in the right. As is customary, CF(I) denotes
the set of all functions infinitely differentiable in 7 and
vanishing outside of some closed set contained in 7.
C=(I) denotes the set of all functions infinitely differen-
tiable in 7, the closure of .

For derivatives, we will use the standard multi-index
notation: Namely, let D; = 9/2x; and let a;,a,,..., o

be nonnegative integers. We denote "

o« oy dz'., [+
=D{iDg2-- Dn,

where a = {a,,...,a,},

fal= 2a,.

B. Generalized derivatives and the spaces Wz/ (1)

We will more or less follow Sobolevl3 or Agmonl4
in our discussion. We begin with the concept of gene-
ralized derivative.

Definition (Generalized devivative):
If there exists k € L2(I) such that

(f, = 1)'e'Dog), = (, &),

for all g € CH (1), then % is called a generalized deriva-
tive of f and we write

Let f € L2(I).

h = Def.

Moreover, we denote the set of all f € L2(I) having
all generalized derivatives of order j = I by Wi(I).

A generalized derivative, if it exists, is unique (modulo
sets of measure zero in /). This follows directly from
its definition coupled with the fact that C§ () is dense
in L2(I). In addition, if a function f is I tlmes continu-
ously differentiable in I then f has all generalized de-
rivatives of order j = | and these agree with the ordin-
ary derivatives (modulo sets of measure zero). Con-
sequently, C*(I) is a subset of W,(I) for all I.

Obviously, generalized derivatives are densely de-
fined linear operators on L2(I). In particular, Wi(I)
is a linear manifold in L2(I). We can define an inner
product and norm for functions in W4(7) as follows:
Let f, g € W4(I); then set

[fyg]z,I = |aElsl (]_)ozf,Dag)I + (f,g)]’

lfl 1= ([f;f]z,I)l/z-

With this norm and inner product, W5(/) becomes a
Hilbert space in its own right (see Agmon,14 p. 4).
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All that we have said so far is independent of the fact
that I is a bounded region. In fact, precisely the same
statements hold for an arbitrary open region in E»,
including E» itself. The following lemma, which we will
use later, is an important “density” result for the space
WL(E™).

Lemma II. 1: The set of all functions infinitely
differentiable and vanishing outside some closed bounded
region, C3 (E®), is dense in W4(E®).

Proof: See Lions and Magenes, 15 p. 37.

The following result, due to Calderon, provides an
intimate connection between W4(I) and WL(E®):

Lemma I1.2 (Calderoén extension theorem): There
exists a bounded linear transformation T of W,(7) into
W4 (E™) such that if u € W§(I), and % = Tu, the restr1c-
tlon of % to 1, u[,, comc1des w1th u. That is, ul, = u.

Proof: See Agmon, 14 p. 171 or, for a more general
statement and proof, see Calderén,16 Theorem 12.

We will use both of these results in proving that
Coulomb-like potentials belong to the class of R-ad-
missible potentials (see Sec. I and Appendix B). Also,
the combination of these two lemmas gives a very im-~
portant density theorem for Wi(I).

Theovem II. 1. C®(I) is dense in Wi(I).

Proof: See Lions and Magenes, 15 p. 44.

Much of the great utility that the Sobolev spaces enjoy
comes from the fact that sets which are bounded in the
| |, ; norm are relatively compact in the space wi (1)
for all j < I. That is, if B is a bounded subset of Wl L),
then every sequence whlch may be extracted from B
has a subsequence which is actually convergent in Wz(I )
for all j < l. We state this theorem, which is due to
Rellich, and refer the reader to Agmon,14 p. 30, for the
proof.

Theorem I1.2 (Rellich): Every bounded set in
Wi(I) is relatively compact in Wh(Z) if j < I.

We remark that this theorem is false if I is replaced
by En. 1t is true, however, that the theorem holds for a
much larger class of regions than the one I belongs to.
For a discussion and more references, see Lions and
Magenes, 15 p. 111,

We close this rather terse section with an inequality
which will be of some value to us.

Theorvem I1.3 (Intevpolation theorem): Let € be a
positive real number such that 0 < ¢ = 1. If u € Wi(J)
for some ! = 2,and if 1 = j =<1 — 1, then

lul? = y(e i ul?; +edllull?),
where y = y(I,1) depends only on I and [.
Proof: See Agmon,14 p, 24,

C. The trace of a function in WZ/ (1). Intregration
by parts

In boundary value problems, we must be able to de-
fine various functions on the surface S. For an arbi-
trary function in L2(I), this is an impossibility because
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the boundary is a set of measure zero in I, It is, how-
ever, possible to make sense out of such a definition if
the functions belong to Wi(I). This is done as follows:
First, we define an operator 7, the trace operator (see
Ref. 15), by setting -

7f = f | (= restriction of f to S)

for all f € C®(I). By Theorem 1, we can approximate

any u € W}(I) in the norm | |, ; by a sequence of func-
tions in C*(I). The trace is then extended to all func-

tions in Wi(I) by taking limits. The following theorem,
which is a version of a theorem of Sobolev,13 guaran-

tees that the trace is well-defined for all f € Wi(I).

Theovem II. 4: For all f € C*(T) and every ¢ > 0,
7f satisfies

I7flls = elfly + Iy,

where C(¢€) depends on I and € but not on f. Hence, 7
may be extended to all functions in Wi(I) and, when so
extended, is a compact map from W1(I) into a dense
subset of L2(S).

Proof: The inequality may be found in Ladyzhen-
skaya and Utral'tseva,? p.49. Other proofs and ver-
sions of this theorem are given in Sobolev, 13 p. 85;
Lions and Magenes, 15 p. 44; Agmon, 14 p.38. In
Sobolev's work, the compactness of the operator is pro-
ved via estimates on integral kernels. The compactness
also follows directly from the inequality given below.
The only portion of the theorem which requires com-
ment is the claim the Wi(I) is mapped by 7 into a
dense subset of L2(S). This follows from the version
of the theorem in Lions and Magenes.15 They prove
that 7 fills the space [H1/2(S) in their notation, W1/2(S)
in ours] which amounts to a “half-order” Sobolev
space. On p. 40, they show that this space includes the
set of all functions infinitely differentiable on S and
that this latter space is dense in L2(S). It immediately
follows that the range of 7 is dense in L2(S). QED

Using Theorem II. 4, various formulas involving
integration by parts may be justified. For example, if
u,v € WiI),

ou — ov
I—a}-i—vd"x_—~fluax

drx + fs dSn TuTv.
i
This is established by first using the corresponding

formula for functions in C*°(Z) and then taking limits
(see Smirnov,17 p. 337).

So far we have avoided the question of any intrinsic
meaning for the trace. Such a meaning does exist: Given
any function f in Wi(I), there exists a function £, equal
almost everywhere to f, such that f is defined on S and
on surfaces “parallel to $”. For example, in the case
of S being the unit sphere, the parallel surfaces are
concentric spheres with radii less than 1. Moreover,
if the parallel surface S, is close to S, then the difference

between f| S and f|g will be small. Again using S as
the unit sphere in E», we have

I 7ol =Foaills =0

as A — 1 from below. The trace of f is simply the re-
striction of 7 to S. For a more complete discussion of
this topic, see Sobolev,13 p. 85, Lions and Magenes, 15
p. 205, and, Narcowich, 18 p, 28.
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As a comprehensive reference for the spaces we have
been discussing, Lions and Magenes15 contains the most
material. The work of Smirnovl7? is less comprehensive,
but also tends to be less abstract. Of course, the origin-
al work on the subject is done in Sobolev's book, 13
Agmonl4 and Ladyszhenskaya-Ural'tseva? provide a
quick overview. The latter work discusses more gener-
al surfaces than those with which we are working.

. THE EIGENVALUE PROBLEM

In the first section of this chapter, we will discuss
various aspects of the eigenvalue problem associated
with ¥V = 0. This is done primarily to collect and make
firm the information that is found in various references.
We will heavily rely on some results of Schechter,6.9
which we collect in Appendix A. In the second section,
we will apply the results we obtain in the first section
to the case in which V is nonzero.

A. Thecase V=0

We place three conditions on the partial differential
operator @,

= — Z}DiA”(x)D],
L

which is associated with the eigenvalue problem given
in Sec.I. These three conditions are

(C) A, ec™D),

(C2) A,) = Ajyx),

(C3) IJ-()I £l2= E E_.'A.'j(x)ﬁj = Ii]_I £12,
t,]

where p,, i1, are positive constants and ¢ is an arbitrary
n~component complex valued vector with norm | £|.

(C1), (C2), and (C3) hold for all x € T, In the rest of the
paper, we consider the derivatives in @ to be generalized
and allow @ to operate on any function in W%(I). This
makes sense because only second order derivatives
appear in @. We now define an operator H, as follows:

(1) HO=Q|D(HO)’
where D(H,)) is the set of all f € W%(I) such that
(2) 8,f=2nA,;x)D;f =0 onS,
ij

where (2) holds in the sense of the trace (see Sec.II).

The main theorem of this section, which is more or
less a collection of results which are known, is

Theovem III.1: The operator H is positive and
self-adjoint. Given any E not in the spectrum of H,,
the operator T(E) = (H, — E)"! maps W4(I) into  _
W4+2(I) for all I = 0. In particular, T(E) maps C*(I)
into C*(I). Also, T(E) maps L2(I) compactly into Wi(I)
and, hence, compactly into L2(I). The spectrum of H,
consists of countably many nonnegative eigenvalues with
+ o being the only limit point. The eigenfunctions of
H, are in C*(I) and pointwise satisfy the boundary con-
ditions.

We will postpone the proof of Theorem III. 1. The con-
tent of Theorem III. 1 is very simple: The eigenvalue
problem associated with the R matrix for V=0 is
classically solvable and the operator (H, — E)~1 has

a smoothing effect on functions.



1629 F. J. Narcowich: Mathematical theory of the R matrix
In the proof of Theorem III. 1, we will need the follow-
ing lemmas.

Lemma III. 1: Q is properly elliptic and the bound-
ary operator 8, = 2, n;A;(x)D; covers Q.
i,j

Proof: The result follows directly from the
definitions given in Appendix A coupled with properties

(C1),(Cyp), and (Cj3). QED

Lemma II1.2: Let f € C®(I) and suppose 3,f = 0
on S. Then the following inequalities hold:

(3a) (f,eN; =0,

@p) @+ vfl, =17l
(3¢) @+ 1fl;=lQfl;,
Bd)  fl =K, +I11),

where K is a constant which depends only on 7, 3,, and @.

Proof: By an easy integration by parts, we have
) @ @)= T 0w ADw);—

Setting u = v = f, BAf = 0 in (4) and using (C3), we
obtain (3a). To obtain (3b) and(3c), we need only use

@+ 1fIZ=1QfIZ+ 2(QF, N, +IIfl2

plus (3a). Finally, (3d) follows from Lemmas III. 1 and
A.l.

The next two lemmas concern the Hermitian form
defined by

(u, 0,v)g.

(6 (w,0)= T (Du,A D), + (u,v),,

%)

which is obviously defined for all , v in W}(I). Corres-
ponding to (5), we define

(6) (w)= (Ku,u))1’2,

Lemma II1.3: With ( , ) as the inner product and
{ ) as the norm, W}(I) is again a Hilbert space. More-
over, there exists a constant C > 0 such that

(1) Clfly,=<f =Clfly,
That is, the norm ( ) is equivalent to the norm | |, ;.

Proof: The form ( , ) satisfies all the algebraic
axioms of an inner product for W}(/). The only proper-
ties that require any proof are the completeness of
WL(I) in the norm { ) and the equivalence of { ) and

1,7—i.e., the inequality (7). If (7) holds however, a
Cauchy sequence v, in { ) norm is also a Cauchy se-
quence in | |1 norm. Since it is known that Wi(I) is
complete in the | |, ;norm, v, must converge in | |, ,
norm to a function v € W%(I But then, applying (7) to
v, — v, we have

(v,— ) =Clv—1u,l, ;.

It is obvious that v, converges to v in the { ) norm.
Hence, if (7) holds, completeness is assured.

To obtain (7), we begin by using property (C3) with
£;=D,f, f € W§(I). This gives
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Mo L 1D f12= 2 D fAD = T ID;fI2
% 4,7 7

Setting C2 = max(i,, £gl) and observing that C2 > 1,
we obtain

C2(T1D.f12 +1f19) = T D, FAD,f + 1712
i 1.7
=cyT 1D f12+1519).
1
Integrating this last inequality over all x in I gives

C21f12 ;= f,fr=C2fl3,,
from which (7) follows trivially. QED

Lemma III.4: Given any f € L2(I), there exists a
unique ¥ € W1(I) such that

8 (u,v)=(f,v

forall v € Wl(I) Iffe Wl(l) then u € W§+{(I) for all
l=0. Ifch (I), thenu ¢ C* (I Moreover,u € D(H )
and (H, + 1)u = f if and only if (8) holds.

Proof: For fixed f, we have
Lol = Fldvi=Clifl .

Hence, the inner product (f, v), is a bounded linear func-
tional on Wi(I). By Lemma III. 3 and the Riesz-repre-
sentation theorem (see Riesz-Nagy,19 p.61), there exists
a vector u € W3(I) such that

<u, v> = (fyv)l

for all v € Wi(I). To see that « is unique, suppose that
u is any vector satisfying

(&,U): (f, v);

for all v € Wi(I). Then, by subtracting this equation
from the last,

(U —u,v)=0.

Hence, # — u is orthogonal to all of W}(I) and u — u = 0,
whence u# is unique.

If f € Wi{I), Lemma A.3 immediately 1mp11es that
uc Wz*l(I) provided I = 1, Also, if f € C*(I), then
Lemma A. 3 implies u € C®(I). When fisin L2(I), we
must resort to another tactic because {(u, v) is not de-
fined for v € L2(I) and Lemma A. 3 does not apply.

First of all, if f € C®(T), we have already seen
u e C°(). We may 1ntegrate the inner product (u, v)
by parts (see Sec.IIC) to obtain

(*) ((Q + l)uy v)] + (aAuy U)S = (f) v)]
for all » € Wi(I). By picking v € C7(I), the surface
term vanishes and we must have that (@ + 1)u = f, since
the last equation holds with zero surface term for the

dense set [in L2(7)] CF(I). But then, using (@ + 1)u = f,
we have

((Q + l)u’ v)] - (fy U)I
for all v € Wi(I) and the surface term in (x) vanishes:

(aAu, U)S = 0.
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By Theorem II. 4, the trace is dense in L2(S). Hence,
d,u is orthogonal to a dense set and we must have that
d,u = 0. Thus,if f € C*(I), u € D(H,).

In general, if f € L2(I),there exists a sequence
f» € C°(I) which tends to f in L2(I). For each f,, we
have a unique #, € C*(Z) such that 3,u, = 0 on S. By
inequalities (3b), (3c), and (3d),

lupy—u,ly ;= 2K(1 (@ + Du,—u)) ;)
since f, = (@ + l)u,, this implies

lu,—uyl g =< 2K(1 f,— £, 1)

But f, is a convergent sequence in L2(I) and hence
Cauchy. The last inequality then tells us that u, is a
Cauchy sequence in W2(I). Since this space is a Hilbert
space, the sequence u, is convergent in W%(/) to some
vector u € W4(I). Taking limits in the equation

<uk’ U) = (_fk?v)[
gives
(u,v) = (f,v),
for all v € Wi(I). Hence,u € WZ(I) even when f € L2(I).

Since u € W%(I), an integration by parts coupled with
a repetition of the argument used in the C*(I) case

gives d,u = 0 on § (in the sense of trace) and (@ + 1)u= f.

Hence, by definition of D(H,), v € D(H,) and
(Hy + Du=f.

Conversely, if (H, + 1)u = f, an integration by parts
shows (8) must hold for all v € W§(I).

We are now ready to prove Theorem III. 1.

QED

Proof of Theovem III. 1: An integration by parts
coupled with property (C3) of @ shows that H, is both
symmetric and nonnegative. By Lemma III. 4, the range
of Hy + 1 consists of all L2(I). Since any symmetric
operator whose range coincides with the whole space is
self-adjoint (see Naimark,20 p. 103), H, + 1 and, hence,
H, are self-adjoint.

Given any E not in the spectrum of H,, T(E) is a
bounded map from LZ2(I) to L2(I). We wish to show
that if f € Wi(I), then T(E)f € Wi2(I).

Setu = T(E)f. Then (H, — E)u = f and Lemma III. 4
implies

((Ho + Du, 'U)I = (u, v) = ((E + Du + f, v)]

for all v € Wi(J). We will use induction on ! to show
f € Wi(I) implies u € Wir2(I).

If I = 0, Lemma III. 4 insures that € W4(I). Suppose
that, for I = k, f € W(I) implies u € Wk+2(I). To com-
plete the induction proof, we must show that f € W&+ 1(])
implies that u € W§+3(I). Clearly, f € W4+ 1(I) implies
f € WKI) and, by hypothesis,u € W§+2(I). But then both
u and f belong to W+1(I) and, hence, so does (E+ 1)u + f.
By Lemma III. 4, we immediately have that u € W&+3(I),
which completes the induction proof.

Next, we wish to show that T(E) is a compact map
from L2(I) to Wi(I). Again letu = T(E)f, (Hy—E)u=f.
By taking limits in (3d), the inequality given there holds
for w. That is,

9 Iulz,ISK(”H()uHI""”u”1)-
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Using the fact that T'(E) is bounded and (H, — E)u = f,
this last inequality gives

Iulz_ISKI”fHI,

where K’ depends on E, but not . Hence T(E) maps
bounded sets in L2(I) into bounded sets in W%(I). By
Theorem II. 2, a bounded set in W([) is relatively com-
pact in Wi(I) and L2(7). Thus T(E) maps L2(I) com-
pactly into W1(I) and L2(J).

Since T(E) = (H, — E)~! maps L2(I) into L2(I) com-
pactly, its spectrum consists of countably many eigen-
values with 0 as the only limit point (see Ringrose, 21
p.51). Hence, T(E)"! + E = H, has a spectrum consist-
ing of countably many nonnegative eigenvalues with
+ « as the only limit point.

We conclude by proving that any eigenfunction u; of
H, is actually in C°°(I) and classically solves the eigen-
value problem. u; being an eigenfunction of H, implies
that

T(Eyu; = (E; — E)lu;,

where E; is the eigenvalue corresponding to ;. From
the start, we know u; € W3(7). But then T(E)u; and hence
u; itself belong to W4(I). Applying the result again tells
us that u; € W§(Z) etc. Continuing in this way, we see
that u; € W4(I) for all 7 = 0. By Lemma A. 2 (Sobolev's
lemma), u; € C*(I). Finally, the trace of a function in
C*(I) is simply the restriction of the function to S.
Hence 9, u; = 0 pointwise on S. Thus %; classically

solves the eigenvalue problem. QED

B. The case V # 0

The approach we take in this section is to add a suit-
ably restricted potential V to H, using a theorem of
Kato and Rellich. By some simple arguments, we then
obtain that not only is Hy + V self-adjoint on D(H), but
that its spectrum is discrete. We then restrict our at-
tention to a class of potentials, which we call R-admis-
sible, which will turn out to be the natural class of pot-
entials for which the R matrix is defined. For such pot-
entials, Hy + V is bounded below and the completion of
the Hermitian form ((Hy + V + A + 1)u, v);, where A is
a certain positive constant, induces an inner product on
W 3 (I) whose associated norm is equivalent to the usual
norm in W (I). We conclude with a result involving the
expansion of functions in terms of the eigenfunctions of
H, + V,where V is R-admissible.

Lemma II1. 5 (Kato-Rellich theorem): Let A be
self-adjoint and let B be an Hermitian operation obeying:
(a) D(B) 2> D(A),

(o) There is an @ < 1 and b > 0 such that

Byl = all Ayl + bllyl
for all ¥ € D(A). Then A + B defined on D(A) is seli-
adjoint.

Proof: See Kato,10 pp. 287-89.

An Hermitian operator B satisfying (a) and (b) with
respect to a self-adjoint operator A is said to be Kafo-
small with respect to A (see Simon,> p. 206).

Theovem III.2: Let V be an Hermitian operator
which is Kato-small with respect to H,. Then the opera-
tor
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H=H,+V, DH)=DH,)

is self-adjoint and the spectrum of H consists of count-
ably many eigenvalues with % « being the only limit
points. Moreover, the operator (H — E)~1 maps L2(1)
compactly into Wi(I) and, hence, L 2(I) for any complex
number E not in the spectrum of H.

Proof: The self-adjointness follows directly from
Lemma III. 5. We need only address our attention to
the compactness of (H — E)~1 and the discreteness of
the spectrum of H.

Suppose that E is not in the spectrum of H, then
(H — E)-! exists and is a bounded operator on L2(I).
Given any f € L2(I),let v = (H — E)"1f. Applying
H,+ V—E=H— E tov and rearranging terms, we
have

Hyv = f— Vv + Ev.
Because V is Kato-small with respect to H,
Ivol,=allHpl +blvl,

where 0 < a < 1 and b > 0. Applying the triangle in-
equality to the expression for H,v and using the last
inequality, we have that

IHll, = [1/A=a)]llFli,+ @&+ |EDIvI,]

Using this last inequality coupled with the boundedness
of (H— E)-1, we have
lHevl+ ol =Clfly,

where C is a constant depending on a, b, and E, but not
v or f. By inequality (9), we have that

Lol = K(IHoll; + 12l
and, hence,
(10) |vl,,<KClfl,.

Hence, by (10), (H — E)~1 maps a set bounded in L2(J)
into a set bounded in W%(I). By Theorem II. 2, any
bounded set in W3(I) is relat1vely compact in W1(I )
and, hence, in L2(I) Be definition, (H — E)~! maps L2(I)
compactly into W1(I) and L2(I).

The discreteness of the spectrum of H is simply a
repetition of the argument used to prove the discrete-
ness of the spectrum of H,. QED

For the purpose of the R matrix, the class of potentials
which are Kato-small with respect to H, is too broad.
We now define a restricted, but physically mterestmg
class of potentials.

Definition (R-admissible operators): Let V be an
Hermitian operator with D(V) C L2(I). V is said to be
R-admissible if D(V) © W}(I) and if, for all f € W(I),

1y vl =mIfl,

where M is a constant which is independent of f.

Clearly, any bounded Hermitian operator on L2(I)
is R-admissible. In Appendix B, we will show that the
many-particle coulomb potential is also R-admissible—
along with Coulomb-like potentials (the Yukawa poten-
tial, for example).
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We now show that every R-admissible potential is
Kato-small with respect to H, and, hence, that Theorem
III. 2 holds for such potentials.

Corollary III. 1: Let V be any R-admissible poten-
tial. Then V is Kato-small with respect to H, and,
hence, Theorem III. 2 holds for such potentials.

Proof: Letwu € D(H,). Then, by Theorem III. 1,
u € W3(I) and, hence,u € W1(I). By the interpolation
theorem (Theorem II. 3),

lul2 ;= y(elul  +eulld)

for all 0 < € = 1. Combining this with (9) and (11), we
have that i

| Vull? = M2y[eK2(|Houll; + Tull)2 + e[ uli?].
By choosing € so that
< -;-(MZ.),KZ)-I
we have
Ivul, = sl Houll + bllull,,
where b depends on M, y, and K. Hence, V is Kato-small

with respect to H;, and Theorem III. 2 applies. QED

In the next theorem, we will introduce an inner pro-
duct on Wi(I) which will play a vital role in the con-
struction of the R matrix. For the most part, the next
theorem is the reason for introducing R-admissible
potentials.

Theorem III. 3: Let V be an R-admissible operator.
Then there exist positive constants A, p,, and p, such
that
(12) pylul? ;= Cuu) + (Vu,u), + allu? = pzlulﬁ‘l

for all u € W(I). Here (u,u) is defined by (5
the Hermitian form

). Hence,

(13)  (u,v), = {u,v) + (Vu,v); + A(u, v),
is another inner product on W}(I) and the norm
(14)  (wy = Ku,w)y )2

is equivalent to the usual norm on W1(I). Moreover,
given any u € D(H),

(15) (uv v>V, A= ((HO tV4+a+ l)u: U)I

for all v € Wi(I). Hence, the operator H = H, + V is
bounded below.

Proof: We will work with the lower half of (12)
first. From Schwartz's inequality and Lemma III. 3,
we have that

(w,u) + (Vu,u), = C 1 uld ; — | Vul Jul.

Coupling this with (11), which holds because V is R-
admissible, we obtain

(x)  Cuw) + (Vu,u), = C 1 ul?  — Mlull lul, ;.
For any three positive numbers a, b, ¢, it is obvious that

ab = 3(ea? + €-1b2),
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Applying this to (*) gives
u, u) + (Vu, u)] = (C-1— %M()'ul%,l - %Mf‘lﬂu “[2

Choosing € = C-1M-1 and x = 3M2C, we have 3C|f |2,
= (u,u) + (Vu,u), + AMu,u); =(C + M+ 2)|u|3 ;, where
the right half of the inequality follows from Lemma

I1L. 3, inequality (11), and the fact that |« |2 < |«[3 ;.

Finally, (15) follows directly from Lemma III. 4 and
the definition of {«, v}, ,. QED

We remark that (15) implies that the inner product
{u, v),,' » could have been obtained by completing D(H ;)
in the inner product (Hy, + V + 2 + l)u, v),.

We conclude with a theorem concerning the expan-
sions in the eigenfunctions of H = H, + V for V R-
admissible.

Corollary III.2: Let V be R-admissible and let
#; be the orthonormal eigenfunctions of H = H, + V
belonging to the eigenvalues E; Foranyve W(I), let

a; = (uj, v)g;

then the expansion
o0
2 au,
) 777

converges to v in both L2(I) and Wi(I). Moreover, we
have

(v>%,x=jZ:)0 (E; +x + 1) a2

Proof: By Theorem III. 3, the set of functions
7. = -1/2
u; = (E; + 2 + 1)1/ 2,

is obviously orthonormal in the inner product  , ) ,.
Moreover, any function v € W1(f) for which

(u;, 0}y, =0
for all j must vanish. This follows because

(@0)y \ = ((H + x + Dy, v),
and -
(H+x+Nug,v),=(E; +2r+ 1)1/2,1]..

Hence, all the Fourier coefficients of v vanish and
v = 0. But then, the orthogonal complement of the span
of the %, in W(I) is the space consisting of the 0 vector.
Hence, the ﬁj span W(I) (see Riesz-Nagy,1° p.72) and
the u . form a complete orthonormal set in Wi(I). The
rest of the theorem follows from the properties of such
a set plus some minor computations. QED

In closing, we remark that if ¥V is a smooth function,
then much of the regularity theory presented in the last
section carries directly over to the case of nonzero V.

IV. CONCLUDING REMARKS

Although we have avoided the question of spin depen-
dent systems, such systems present no real difficulty
as long as the spin dependent interactions are confined
to the potential term V. For the case in which the spin
dependence is carried in the kinetic energy terms (e.g.,
the Dirac equation), the eigenvalue problem is different
and our results do not apply.
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Finally, if the surface S of the internal region has
finitely many “corners” and “edges,’ our results
obviously hold.
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APPENDIX A

In this appendix, we collect some definitions and
lemmas given by Schechter.%:? We will use these in
Sec. III.

1. Ellipticity, proper ellipticity, covering set
A (2k)th-order partial differential operator

2 A, (x)De,
lol=2k

L=~

A (x) € C*(T), is said to be elliptic in T if the charac-
teristic polynomial

P (x, ¢) 2 A ),

locl =2k

]

SRR e AR #8

vanishes for no real n-component vector ¢. The elliptic
operator L is said to be properly elliptic in I if for
every x, € S, every real nonzero vector T tangent to

S at x5, and every real nonzero vector N normal to §

at x;, the polynomial

P(z) =P (x,,N+2T)
has exactly k roots,

A1("[‘7 N)r .. "’ Ak(Ti N)y

with positive imaginary parts.

By a boundary operator, we mean an operator of the
form

B= %

b o (xo)DC,

lal=m
where the coefficients b ,(x ) need only be defined on the
boundary S, but are assumed infinitely differentiable
there.

A set of k boundary operators {B,}£ ;,

B, = W

b, D%,
Ialﬁmj

where m < 2k, is said to cover the properly elliptic
operator L if at every point x,€ S, and for every real
nonzero vector T tangent to S at x; and every real non-
zero vector N normal to S at x,, the polynomials

Qj(z) = \ 2 bja(xo)(N +2T)

mj

are linearly independent modulo the polynomial

k
S = 1 [z = \,(T, M)
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where 1,;(T, N) are the roots of P(z) with positive ima-
ginary parts Said another way, the equation

Z;l C,(x0)Q;2) = M(2)S(z),
j=
where M(2) is some polynomial in 2, holds only if

Cj.—_M(z)=0forj =1,...,k.

For more details, we refer the reader to Schechter's
papers.6.9

2. Three important lemmas

We now state three lemmas: The first involves an
inequality for properly elliptic operators, the second
and third are regularity theorems.

Lemma A.1 (Schechier): There exists a constant
K depending only on I, L, and the B, such that

|v12,, =K(lLv 12 + v 2
for all v € C*(I) satisfying

j=1,...,k

’

B,v=0 onS§,

if and only if L is properly elliptic and the set {B }%,
covers L.

Proof: See Schechter? for the statement and
references.

Lemma A.2 (Sobolev): It u € WL(I) for all I = 0,
then # € C(I) after correction on a set of measure
Zero.

Proof: See Sobolev, 13 p. 69. The statement we use
may be found in Schechter,® Lemma 6. 1.

Lemma A.3 (Schechter): Let E; » E] be partial dif-
ferential operators of order = m; = m ’For all g€
Wp(I), define

(f:g> = 213 [Ejf, E]{g]m—m]-',l‘

Further suppose that there exists a constant ¢ such
that

cUflZ  ={fifr=clfl?
for all f € Wg(I). M u € Wg(I) and g € W5(I) satisfy
(u’v>= (gy v)[

for all v € Wi(I), then u € W§m+{(I). Moreover, if
ge e, then 50 is u.

Pyroof: See Schechter,® Theorem 6.1, for a more
general statement of the theorem and for the proof.

APPENDIX B

Consider a system of N particles with positions
X,, Xy, ..., Xy and let x stand for the 3N-dimensional
position in configuration space. We wish to show that
the many particle Coulomb-like potential

1 VE) = E] [C )/ | %, —x,1],
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where C; (x) (x) is a real, bounded measurable
function of x in I is R- adm1s31b1e Supposing that f
is in the domain of the operators

|x;—xj|-1’
we have
(2) l Vf”15§_ M;'j”lxi"le-lfuz
1>

where M ;; bounds C,;(x). To show that V(x) is R-
admissible then reduces to showing that for all f ¢
W1(I), there exists a constant K, independent of f,
such that

@ Ilx,—x1 7], <KIfl, ;.

Theorem B.1: V(x) is R-admissible

Proof: Let f € Cg (E™) and let X = x, — x; and
r = | X|. Holding all the coordinates except X ;, X ,, X,
constant, we have the following inequality due to Cou-
rant,22 p. 446:

i |f12

72

d3x

SVE:

where the integrals are over all values of X. Integrat-
ing over the remaining coordinates of f and using the
obvious inequality

l f of
X, ,

2 ¢
L |2f
aXZ

2
Jox,

' X,

=cz2|vflz,

2 af | 2
“Jax,

3

where C comes from changing coordinates, we have

1771y
Also,

19 Dy = 151, g

Hence
@ 15/7 e =2CIF1 pon

By Lemma II. 1, C3 (E3%) is dense in W}(I). Hence,
by taking limits, (4) holds for all f € W}(ES3¥). By the
Calderé6n extension theorem (Lemma II. 2), given any
f € Wi{l), there exists a bounded linear transformation
T from W3(I) to W}(E3¥) such that

Tfl] = f
Using Tf in (4) along with the obvious inequality,

WTf/rlly = W/l

we have

®) N/l =

IA

2C1 97 I o

= 17 /v gsn,

2C| Tfl g3n = 2CC°If1y

where the upper inequality follows from the boundedness
of T. Hence, (3) holds for all f € Wi(I) with K = 2CC".
By our earlier discussion, it immediately follows that
V(x) is R-admissible. QED

Two remarks are now in order: First of all, V(x) not
only includes the case of the Coulomb potential, but also
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the Yukawa potential; secondly nothing precludes separ-
ating out the center of mass and the result holds even
in that case.
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In this paper, it is shown that Wigner’s R matrix, for a certain class of unbounded potentials which
may be nonlocal or have Coulomb-type singularities, exists, is a compact operator, and that the
expansions associated with the R -matrix converge. For the same class of potentials, a perturbation
theory is constructed and conditions are given for the convergence of the resulting Born-type

expansions.

1. INTRODUCTION
A. Background

The existence and properties of the R matrix and the
convergence of the expansions associated with it have
been rigorously examined only in one-dimensional cases
or cases in which separation of variables is possible, !
even though the R matrix has been used extensively since
its inception. ? In this paper, we will show that, in a gen-

eral setting, the R matrix exists, is a compact operator,

and that the usual expansions associated with it con-
verge. In addition, we will construct a perturbation the-
ory for the R matrix and give conditions for the conver-
gence of the Born-type expansions that arise.

In Paper I,® we discussed a slightly generalized ver-
sion of the eigenvalue problem associated with the R
matrix. Similarly, we shall also discuss a generalized
version of the R matrix. In the usual R matrix theory,
the configuration space of a system of particles with »
spinless degrees of freedom is divided into two regions:
the internal region I, which is bounded and has a smooth
surface S; and, the external region, which is the com-
plement of I. Given, in I, a solution ¥ to the time-inde-
pendent Schrddinger equation,

(- A+ V=EY, (1)

the R matrix takes 9y/9n (=normal derivative of  on S)
into y! ¢ (=restriction of ¥ to S or “value of ¥ on S”).
Instead of the time-independent Schrddinger equation,
we shall consider the partial differential equation

n 0 oy
=— — | —_— + = .
Q+ V== 2 5 Ayl 5=+ Vi=EY (2)
Here, the A; (x) are smooth and form the components of
a uniformly posmve definite Hermitian matrix. In this
more general case, we define the R matrix as the oper-

ator which takes the derivative

G
2,9=2] m; A (%) v, (3)
i, ox,

where the »; are components of the outward-drawn nor-

mal to S, into #lg. In case A, (x) is the unit matrix, we

are back to (1) and the usual R matrix.

A formal expansion for the “generalized” R matrix
can be obtained in the same way as the formal expansion
for the usual R matrix. First, the eigenvalue problem

(@+VWU,=E, U, 3,U,=0 onS§ (4)

is solved; then, i is expanded in the U,
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zp:g;,AkUk. (5)
Using Green’s theorem, it is easily seen that
A;g:(Ek_E)-l(Ukls’ aAd))si

where (, ) is the inner product in L?(S) with the usual
surface measure and U, | is the restriction of U, to S.
Substituting the expression for A, into the expansion for
y and evaluating on the boundary S we obtain

1

zplQ— UIS(U’S’ Alp)S

Thus the R matrix, R(E), has the formal operator ex-
pansion

(6)

where, for any occL?(S),
Po= Uk|s(Uk|S’0)S'

There are two major difficulties with the approach
outlined above: we have assumed (a) the existence of a
¥ satisfying (2) and having roughly arbitrary surface
derivative 9,3, and (b) the convergence of the expansion
(5) to y on S. (a) is crucial, for without it, R(E) may not
be densely defined and, hence, may not be an operator!
In Sec. 3, we will show that it is possible to resolve
these difficulties for a large class of Hermitian opera-
tors V, which we call R admissible and which includes
potentials with Coulomb-type singularities (see Sec.

2 C).

B. Organization and summary

The remainder of the paper is divided into two sec-
tions. In Sec. 2, we establish notation and summarize
Paper 1. In Sec. 3, we construct the R matrix for R-
admissible operators (see Sec. 2 C), show that it is
actually a compact operator, and prove that the expan-
sion (6) converges to R{E) in the uniform topology of
L%(S). In the last part of Sec. 3, we construct a per-
turbation theory for the R matrix and give conditions for
the convergence of the resulting Born-type expansions.

2. SUMMARY OF PAPER |
A. Notation

In what follows, the symbol I denotes a bounded, open
region of Euclidean n-dimensional space, E". The
boundary (surface) of I, S, is an infinitely differentiable,
(n - 1)-dimensional manifold. S is orientable and I lies
entirely on one side of S.

Copyright © 1974 American Institute of Physics 1635
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We will use a number of spaces in the course of the
paper. L*1), L*8), and W)(I) are, respectively, the
spaces of complex-valued square integrable functions on
1, S, and the space of complex-valued functions on
which have all 0 <j </ square integrable generalized
derivatives. 3'* The inner products and norms are de-
noted by (, ), Il ll;; (, ), Il llgzand [, 1, 1 1,5
respectively. All inner products are linear on the
right and conjugate linear on the left.

In addition to these Hilbert spaces, we will also use
the spaces C°(I), C=(S), and C2(I). These are, respec-
tively, the set of all complex-valued, infinitely differ-
entiable functions on I (= closure of I), S and the subset
of C”(I') whose elements vanish outside of some compact
subset of 1.

By @, we denote the partial differential operator,

0 4

Q=- E A”(x)

i,i=1 ax,.

where A, (x) satisfies

(Cl)Aij(x) & C.O(I—)a

(Cz)Aij(x):Aj,'(x)y
(C3) o[ €]7 < L EeA ()8, <ma €%

and where u,, (i, are positive constants and £ is an ar-
bitrary »-component complex-valued vector with norm
1£]. (C,) and (C,) hold for all x<I. By 8, we denote the
boundary operator,

0
= N s . _— 8

aA 2_—'; ntAu(x) axj ( )
where »,; are the components of the outward unit normal
to S.

B. The trace of a function.in W,/(l)

Given an arbitrary function f in L%(I), it is impossible
to assign any meéning to the restriction of f to S. How-
ever, for functions in W,'(I), I =1, this is possible, as
the following “trace theorem” shows.

Theovem 2.1: For all f = C=(I) and every €>0, flg
satisfies

Il s s <elfl,, ,+C@ONFI,

where C(¢€) depends on I and ¢, but not /. Hence, the
linear map 7f=f1¢ can be extended to all functions in
W,(I) and, when so extended, is a compact map from
W, (I) into a dense subset of L%(S).

Proof: The proof and a discuésion may be found in
Paper I (Theorem 1. 4). Further references are given
there.

As we pointed out in Paper I, the trace can be used to
extend the formulae for integration by parts to all func-
tions in W,'(I). This is because f ¢ W,’(I) implies all
derivatives of f of order 1-1 or less are in W,}(7).

C. The eigenvalue problem

Given an Hermitian operator V on I*(J), the eigenvalue
problem associated with the R matrix is to find a com-
plete set of eigenfunctions U, such that
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(Q+V)U,=E,U, (9)
9,U,=0ons§,

where @ is defined by (1) and 8, by (2). The last equation
is taken to hold in the sense of trace. Precisely, let

HO=Q|D(H0)’ (10)
where D(H,) consists of all f in W,%(J) such that 9,/=0on
S. We then have the following theorems from Paper I.

Theorem 2.2: The operator H, is positive and self-
adjoint. Given any complex number E not in the spectrum
of H,, the operator (H,- E)"* maps W,'(I) into W,***(I)
for all 1> 0. In particular, (H,- E)* maps C*(I) into
c=(I). Also, (H,- E)™ maps L*) compactly into W,*(I).
The spectrum of H, consists of countably many nonnega-
tive eigenvalues with + « being the only limit point. The

eigenfunctions of H, are in C=(I) and pointwise satisfy
the boundary conditions.

Proof: See Paper I, Theorem 1. 2.

Theorem 2.3: Let V be an Hermitian operator on L¥(])
satisfying

(a) D(V)> D(H,),

(b) there is an a<1 and b >0,
such that

Vi, <allH fl,+0l7 1,

for all f in D(H,). (i.e., V is Kato-small with respect to
H,). Then, the operator
H=H +V, D(H)=D(H,)

is self-adjoint and the spectrum of H consists of count-
ably many eigenvalues with + « being the only limit
points. Moreover, the operator (H — E)™! maps L3(I)
compactly into W,%(I) and, hence, L2(I), for any complex
E not in the spectrum of H.

Proof: See Theorem 2.2, Paper 1.
An Hermitian operator V with D(V)c L%(I) is said to be
R-admissible if D(V)> W, (I) and if for all f « W,'(J),

Wl <mlfl, (11)

where M is independent of f.

We remark that, besides including all bounded
Hermitian operators, the class of R-admissible opera-
tors includes the physically interesting Coulomb-like
potential

V=2 [C, )/ [x~x,1],

where C, (x) isa real-valued bounded function of x and

. X, is the position of the ith particle in an N particle

system,

R-admissible operators will play a central role in the
construction of the R matrix. i

Theorem 2.4: Let V be R-admissible. Then V is
Kato-small with respect to H, and, hence, Theorem 3
holds for such V. Moreover, H=H,+ V is bounded below
and there exists a constant A such that the Hermitian
form
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Go8v= S, D A 5E e+ (V@ 4Ny (12)

which is defined for all f, g= W,'(I), forms a new inner
product on W,*(I) whose norm,

Fry=CLH N

is equivalent to the usual norm on W,Y(I). Finally, if
f = D(Ho): 8c Wzl(l)

<f:g>V:((Ho+ V+ )‘)f!g)p

and, conversely, if there exists &< L*(I) such that
(f! g>v': (h'y g)p

then f = D(H,) and h=(H,+ V+))f.

Proof: See Theorems 2.1, 2.3, Corollary 2.1 and
Lemma 2.4 of Paper 1.

(13)

(14)

Concerning the inner product ( , >,,, we have the fol-
lowing important corollary:

Corollary 2.1: Let V be R-admissible and let U, be
the orthonormal eigenfunctions of H=H,+ V belonging
to the eigenvalues E,. For any v W,'(I), let

A,=(U, v);.
Then the expansion

2 AU,

k=0
converges to v in both L2(I) and W,'(I). Moreover, we
have

%0

(W)= 2 (E,+ 0|4, %

k=0

Proof: See Corollary 2.2 of Paper 1.

We close by remarking that if V preserves W,*(I) for
all 7 =0, then the part of Theorem 2 concerning the reg-
ularity of (H,— E)"'f holds for (H - E)"'f as well.

3. CONSTRUCTION AND PROPERTIES OF THE
R-MATRIX

To construct the R matrix, we first solve the boundary
value problem

(Q+Vy=Ey,

aAZp: g,
where o= C™(S), ¥ W,°(I), E is not an eigenvalue of
H=H,+V, and D(V)> C~(I). Next, we define a linear
operator U(E) which maps ¢ into y. If V is R-admissible
U(E) can then be extended to a compact map from L%(S)
to W,X(I). Finally, the composition 7U(E) is the R

matrix, R(E). TU(E) maps o= d,¢ into the value of i on
the surface S.

(15)

The procedure outlined above is carried out in Secs.
3 A and B. In Sec. 3 C, we discuss some of the prop-
erties of the R matrix and show that the Mittag—Leffler
expansion given in Sec. I A converges in the uniform
topology of L%(S). Finally, in the last section, we dis-
cuss the perturbation of R matrix and give conditions for
the convergence of Born-type expansions.

A. Solution of the boundary value problem
To solve the boundary value problem (15), we will

borrow a trick from the theory of partial differential
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equations: Pick any v ¢ W,2(I) and suppose =0 Y
solves (15) and § ¢ W,*(I), then y-ve D(H) because
3,(¢-v)=0-0=0. Applying H - E to ) - v and using the
definition of H, we have

(H-E)y-v)=(Q+V-EW-(Q+V-E.

Since i solves (15), the first term on the right vanishes.
After multiplying by (H — E)™* and rearranging terms, we
obtain

v=v—(H-EY'(Q+V-E). (16)

Conversely, given i satisfying (2) with » having the
properties stated earlier, y obviously satisfies the
boundary value problem (15). With this in mind, we now
prove the following theorem:

Theorem 3. 1: Given any o< C(S) and any Hermitian
operator V such that V is Kato-small compared to H,
(see Theorem 2. 3), and such that D(V)> C*(]), the
boundary value problem

(Q+Vw=Ey,

where E is not an eigenvalue of H=H,+ V, has a unique
solution in W,%(I). Moreover, if V maps C~(I) into C=(),
then y < C*(I) and the boundary conditions are satisfied
pointwise.

9,0=0,

Proof: By a theorem of Schechter (Ref. 5, Corollary
4.1), it is possible to construct a function v C*(I') such
that 8,v=0. If we define g by (2), we see that ¢ « W,2(I)
{see Theorems 2.2 and 2. 3). If V preserves C~(I'), then,
by the remark at the end of Section 2.3, (H-E)™ pre-
serves C=(I). Since v= C(I), ( +V-E) v=C™(T) and
hence, iy c C*(I'). Successively applying (@ + V - E) and
d, to 9, we see that y, as defined by (16), solves (15).
Moreover, the continuity of the derivatives of ) in I
guarantee that the boundary conditions on taken on point-
wise; otherwise they are taken on in the sense of trace.

Finally, we will show that i is unique and, hence, in-
dependent of our choice of v. Suppose 3’ « W,%(I) also
solves (15). Then ¢ -y’ « D(H)=D(H,), for 8,(y-¢’)
=0-0=0. Applying (H-E) to -y’ gives

H-E)p-3")=(Q+V=-E)}p~(Q+V-E)y=0.

Since E is not in the spectrum of H, we must have p=1’.
Hence, j is unique and depends only on o. QED

Two remarks are now in order. First, Theorem 3.1
holds for any R-admissible V because D{(V)> C*(I).
Second, ¢ =0 if and only if 0=0: Obviously, if =0,

v D(H) and (2) vanishes identically. Conversely, if y
=0, (2) implies that v = D(H) and hence, 0=0.

Since p is uniquely determined by 0, we may define the
following map U(E):

U(E): o~ . (17

U(E) is obviously linear and is defined for all o C*(S).
The next section will be devoted to studying U(E).

B. The operator U(E}
The main result of this section is the following
theorem:

Theorem 3.2: Let V be R-admissible. Then the oper-
ator U(E) defined by (17) can be extended to all of L%(S)
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and when so extended is a compact map from L%(S) to
W,HI). Moreover, setting y=U(E)o and letting f < W, (1)

(fs Oy =(7f, 0)s +(E + XN, ¥)ps (18)

where (, ), is defined by formula (12) and 7/ is the
trace of f. Finally, U(E)o=0 if and only if 0=0.

Proof: We begin by justifying (18) for o= C*(S). To do
this, we need only note that y = U(E)o e W,%(I) by Theorem
1 and integration by parts is justified. Hence,

f E_BLA”(x)_aZ;_If d"x

Ii,j axi
_ 0 3y —
=[ - — —_— 0,9.
f’ ‘Z';f 2%, Ay) dx; +j;dS 7 Oa

Since 0,9 =o0,

: o _
- E—-A,-j(x)m—QlP,

19
i, 0%; (19)

formula (18) follows immediately.

Setting E = — \ (which obviously cannot be in the spec-
trum of H) in (18), we have

<f, U(-x)0>v=(7f, o)sa (20)

where f ¢ W,}(I) and 0 = C°(S). However, (20) implies that
U(- 2)o is nothing more than the adjoint of the compact
operator 7, relative to the inner product {, ), on W,'(J),
when restricted to 0« C*(S). Hence, we may extend
U(~2) to all of L%(S) by this correspondence. Since 7 is
a compact map from W,'(I) to L(S) (see Theorem 2.1),
the adjoint of T relative to (, ), is a compact map from
L?(S) to W,Y(I) (see Riesz—Nagy, Ref. 6, p. 217). Hence,
U(-2) can be extended to a compact map from L*S) to
w,i(I).

Again restricting o to C*(S), we obtain from (16) the

following relation between U(- \)o and U(E)o by sub-
stituting U(~ A)o for v:

U(E)o=U(-=A)o - (H - E)™(Q + V — E)U(~ \)o.

Since (Q + V)U(-A)o=—AU(~27)o, this last formula im-
plies

UEYo=U(-A)o+ (A +E)XH - E)U(-2)o
or, for o= C~(S),
UE)=U(=A)+ (A +E)H - EYU(-2).

By means of (21), we can extend U(E) to all of L*S).
Moreover, U(E) is compact as a map from L3(S) to
W,M(I) because it is the sum of the compact operator
U(- 1) plus the product of the compact operator (H — E)™!
with U(- ) [(H - E)™* maps L%I) compactly into W,'(I) by
Theorem 2.3, it therefore maps W,X(I) C L*(I) compactly
into W, (I)].

Formula (18) may be established for all o< L?(S) by
first noting that this has already been accomplished for

C=(S), which is dense in L%S) (see Ref. 4, p. 40) and
then by taking limits.

(21)

Finally, U(E)o=0 implies (7f, 0)g =0 for all f ¢ W,'(I).
Since the range of 7 is dense in L%*S) (Theorem 1. 1),
o=0. Conversely, we have already seen that 0=0 im-
plies ¢=0. QED
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From now on, we shall mean U(E) in the extended
sense given by Theorem 2,

We remark that even for arbitrary o, U(E)o still sat-
isfies the boundary value problem (15) in a generalized
sense. It is relatively easy to show that if @, =@ |
where D(Q,) is the set of all f « C5(I), then

D(Qg)’

(Qx+ V) (U(E)o)=EU(E)o.
The boundary conditions are then satisfied in an inner
product sense.

The following corollary to Theorem 2 will be crucial
in establishing the convergence of the R matrix expan-
sions:

Corollary 3.1: Let V be R-admissible and let U,, and
E, be as in Corollary 2.1, Then, if E+ E,,

Akz (Uk; U(E)U)

is given by
A,=(E,- E)' (17U, 0), (22)
and the conclusions of Corollary 2.1 hold.
Proof: Let y=U(E)o, by Theorem 2.4,
fs y=(H+ X}, ¥),
for any f < D(H). Setting f=U,, we have
Uy Py =(E,+ 1) (Uy, ).
By (19), however, we also have
Uy 0y =(TU,, 0) +(E + X)) (U, ¥),.
Solving these two equations for (U,, ¢), =A, gives (22).
QED

C. The R matrix

In what follows, we assume that V is R-admissible and
that F is any complex number not in the spectrum of H.

As we pointed out in the introductory paragraphs to
this section, the R matrix is defined by

R(E)=TU(E). (23)
For o< C™(S), R(E) maps the derivative 9,(U(E)o) into
the value of U(E)o on S,

The next theorem gives several important properties
of R(E).

Theovem 3.3: R(E) is a compact map from L*(S) to
L3(S). The spectrum of R(E) consists of countably many
eigenvalues with 0 being the only limit point. In addition,
the Hermitian from (a, R(E)0)s, a,0¢c L?*S), has the
absolutely convergent Mittag— Leffler expansion
(0!,R(E)cr)=k_ZO(E,¢—E)'1 (a, TURs (TUy, 0)s. (24)
Hence, R(E)*=R(E) and, for real E, R(E) is self-
adjoint,
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Proof: Since R(E) is the composition of the compact
maps U(E) (Theorem 3.2) and 7 (Theorem 2.1), R(E) is
itself compact. The characterization of the spectrum of
R(E) is simply the characterization of the spectrum of an
arbitrary compact operator (see Widom, Ref. 7, p. 23).

To establish (24), consider formula (18) with f
=U(E)o, and p=U(E)a,
(U(E)o, U(E)a), = (TU(E)0, a)s + (E +\)(U(E)o, U(E)a),.
Hence,
(TU(E)o, a)g =(U(E)g, U(E)a), — (E + \)(U(E)o, U(E)a),.

Using Corollary 3.1 and Corollary 2.1, this last
formula becomes

Ep+ 2
(R(E)o, ) ZE‘; lEk-—Elz (0, TU)s (TU,, @)
ed E+2
g A F BT (0, TU)s (TU,, ).

After simplification, we obtain

(R(E)o, a)g =§ —Ek—ig (0, 7U )5 (TU,; a)g-

Upon conjugation, we obtain (14). The expansion is ab-
solutely convergent because it is the difference of two
absolutely convergent expansions. Finally, to see that
R(E)*=R(E), replace E by E in (9), interchange the
roles of ¢ and @, and conjugate. This gives

(R(E)a, o)s = >

X, E(a U (TU,, 0)s.

Hence, for all &, o< L%(S),
(R(E)a, 0)g =(a, R(E)0)s .

This is only possible if R(E)=R(E)*. QED

Theorem 3.3 already establishes the convergence of
the matrix expansions for R(E). In the next theorem,
which is the main result of this paper, we will prove
that the operator expansion (6) converges in the uni-
form topology of L*(S).

Theorem 3.4: Let P, be the projection
Po=1U, 0).

Then, R(E) has the operator expansion,

= 1
_ - 25
R(E) E‘;Ek—E P, (25)
where the expansion holds in the uniform topology of
L¥S) [i.e. (25) converges norm-wise to R(E). See Ref.
6, p. 150].

Proof: By Corollaries 1 and 2.1,

U(EYo=), ——

HE-E TU, (TU,, 0),

where the expansion given converges to U(E)oc in the
norm of W,(I). Since 7, the trace, is a compact map
from W,X1) to L%S) (see Theorem 2.1), it is also con-
tinuous. Hence,
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1
TU(E)U—;L-,; F.-F

TU(7U,, 0)s.
or, for any fixed o= L*S),

& 1
R(E)o ——kgg E_—E P.o

Thus, the expansion (25) converges to R(E) in the strong
sense. To prove uniform convergence, we must show
that (25) converges independently of o.

First of all, we note that for real E, the operator
sequence R (E), defined by

RE)=Y. ——_ P
¥ ‘k=0Ek_E »

is an increasing sequence of operators which is bounded
above:

N
(0,R(E)0)= kZ(:) |(TUk, 0)s |?
<X E |(7U,, 0)g |2.

By (25) we have,
(0, Ry(E)0)s <(0, R(E)0)s.

Hence, by a theorem of Vigier (see Ref. 6, p. 263),
R,(E) has a uniform limit. Since the uniform limit and
the strong limit are the same, provided the former
exists,

R(E) =uniform-limit R ,(E)

N~

and (25) holds uniformly for real E. For complex E, a
similar argument holds after breaking R(E) into real
and imaginary parts. QED

D. Perturbation of the R matrix

Let V, and V be R-admissible operators. Qbviously,
the sum V, + V is also R-admissible and, assuming E is
not in the spectrum of either H,=H,+V, H=H,+V,+V,
we can form the operators U,(E), R,(E) and U(E), R(E)
associated with H, and H. Two questions naturally arise:
(1) How are U,(E), R,(E) and U(E), R(E) related? (2) Can
we obtain Born-type expansions for U(E) and R(E) in
terms of U,(E), R,(E) and “powers” of V?

To answer the first question, let o C=(S) and let
$, =U,(E)g and y=U(E)o. By Theorem 1,

(Q+ V)9, =Ep,
and

(+V,+V)p=E.
Subtracting the first equation from the second and noting
that 2,4, =0=29,y implies that ¢, — y ¢ D(H,), we have

(H, - EX¢=- ) ==V,
or, returning to y=U(E)o, §, =U,(E)g,
U(E)o=[1+(H,-E)'V]U(E)o, (26)
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for all o< C™(S). Conversely, a similar argument shows
that

U(EYo=[1-(H-E)'V]U,(E)e, (27

which holds for all o C™(S). This leads us to our next
theorem,

Theorem 3.5: If E is not in the spectrum of H or H,,
then both (H, - E)'V and (H - E)*V map W,'(I) compactly
into itself; in addition, the following hold:

(@) 1-(H-E)'V=(1+(#H,-EY'V]?,
(b) U(E)=[1+(H, - EY'VI"' U\(E),
(¢) R(E)=7[1+ (H, - E)'V]' U(E).

Proof: The R-admissible of V guarantees that V maps
W,'(I) continuously into L%(I). By Theorems 2.3 and 2. 4,
(H, - E)™ and (H - E)™* map L*(I) compactly into W,%I).
Hence, the composition maps (H, — E)'V, (H—-E)V are
compact.

To prove (a), we first note that both 1 - (H - E)'V
and 1+ (H, - E)™'V are bounded maps on W,(I). Hence,
no question of domains arises.

Multiplying the two together, we have,
(1-(H-E)'V]1+(H,-E)'V]

=1-{H-E)'-(H,-EY*+(H~-E)'V(H, -E)'}V

=1-(H-E)'{H,-E)-(H-E)+ VHH,~E)'y

=1-(H-E)'{H,+V-E)-(H-E)}(H,- E)'V.
Since the term in the braces vanishes identically, the

product of the two operators is 1. An identical argument
shows that

(1+H, -EY'V][1-(H-E)'V]=1.
Hence, 1+ (H,~E)"' and 1~ (H - E)"'V are mutually in-
verse,

(b) follows from the boundedness of [1 - (H - E)'V]
U,(E) coupled with the fact that (27) holds on C*(S),
which is dense in L%S). (c) follows from (b) and the de-
finition of R(E). QED

For convenience, define

T(E) =(H, - E)'V. (28)

Under the assumption that the operator norm of T(E) in
W,(I) is less than unity, it is clear that

[1+T(E)' =3 (- 1)'T(EY, (29)
1=0

where the expansion converges in the uniform topology
of bounded operators on W,}(I). By substituting this ex-
pansion into (b) and (c¢) of Theorem 5, we obtain the fol-
lowing Born-type expansions for U(E) and R(E):

U(E)=U(E) + é (= 1)) T(E)! U (E) (30)
and
R(E) :Rl(E)+lZ1) (= 1)* 7[T(E) ' U (E). (31)

The condition on the W,(I) operator norm of T(E) is
inconvenient. First of all, there are many norms on
W,XI); secondly, they are hard to compute with. As it
turns out, there is a weaker condition which implies the
convergence of (29), (30), and (31): T(E) is actually a
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bounded operator on L%(I); if the L%(I) operator-norm of
T(E) is less than unity, then the expansions (29), (30),
and (31) all converge in the stated topologies.

Before we state and prove the next theorem, let us
recall a few facts about the inner product associated with
Ve, (, >V1‘ By Theorem 2.4, there exists a constant 1,
such that the Hermitian form

af 0
G800, = i T A ZE 4 Vi),

+0(F,8); (32)

is an inner product on W21(1) whose associated norm,
{ )y, is equivalent to the usual norm on W,I), | [y,
Thib means that there exist constants p, and p, such that

Py <f>v1 < lf’1,1<p2<f>vl°

Thus, for the R-admissible operator V (also for V),
there exists a constant M’ =p,M such that

Ve, SM’<f>V1, (33)

for all f ¢ W,'(I). Finally, if f cD(H,)=D(H,) and
8cec Wzl(ny

(& )y =g Ho+ Vi+ 0 )= (g, (H, +1,)f). (34)

We are now ready to prove a theorem and a corollary
concerning the convergence of the expansions (29), (30),
and (31).

Theovem 3.6: Let E not be an eigenvalue of H, or H
and let T(E) be defined by (28). Then, T(E) can be ex-
tended to a compact, and, hence, bounded, operator on
L3(I). Moreover, letting N(E) be the L%(I) operator norm
of T(E), the condition N(E)< 1 implies the convergence
of the expansions (29), (30), and (31) in the stated
topologies.

Pyoof: The show that T(E) can be extended to all of
L¥)asa compact operator, consider the formal adjoint
of T(E), V(H,—-E)™. By Theorems 1.3 and 1.4,

(H, - E)* maps L¥J) compactly into W,*I). Moreover,
the R-admissibility of V implies that V maps W,'(I)
continuously into L%(I). Hence, V(H, —E)™ is the com-
position of a continuous operator and a compact operator
and is, therefore, compact. We may then extend T(E)
by setting T(E)=[V(H, - E)']*. For functions in W,(I),
this coincides with (28). T(E) is then compact because

it is the adjoint of a compact operator (see Ref. 6, p.
217).

In order to show that (30) and (31) converge for
N(E)< 1, we need only show that (29) converges in the
uniform operator topology of W,'(I}. To do this, con-
sider the operator identity

A+ TEN - (- 1) T(E) =(- D" T(E)* (1 + T(E)) ™.
1=0

(35)

Let ¢ =T(E)f, where f=T(E)*(1+ T(E)'g, g W, (D).
Using the norm ¢ >V1’ we have by (34) and (28)
(®),2=(9, (Hy+\,)H, - EY* V7).

Making an algebraic manipulation and using the
hermiticity of V, we obtain
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(®)2=E+MlE+(Ve,f),.

Next, using Schwartz’s inequality, (33), and the in-
equality

ab s 3(Eéd® + €2b?),
which holds for all a, b, €>0, we see that
(2 < [E+ 2] 191+ 3M7 ()2 + €2IIAIE).

Setting €2=M’, using ll¢ll, <N(E) lif|l, and rearranging,
we get

($)y2 <[2|E+ 1 |NEP + M2l 1. (36)

If we now substitute f=T(E):(1 + T(E))g into (36) and
use the facts that

I(1+ T(EN " gll, < (1= N(ENigll,,
which holds for N(E)<1, and

lgll; < |gly,r <02lgdy,

we have

($hy, <CENN(E)J* @y - (37

Here, C(E) is the accumulation of the various constants
and depends on E, but not L. As L — », (37) implies
that (¢), — 0 uniformly in g. Hence, the right side of
(35) tendk to zero in the uniform topology of W,'(I). This
establishes the convergence of (29) and, hence, (30) and
(31).

Corollary 3.2: Let E, be an eigenvalue of H,, N(E) be
as in Theorem 6, M’ as in (33), and F=E +,= |Fle'®,
Then,

Eetr, \'2 M - a
S ’ < 1/2 - 1
N(E) <M sup (——_—LIEk—Elz> <3 |F| csc(z)

(38)
Hence, (29), (30), and (31) converge if one of the above
is less than unity.

Proof: Using the definition of the norm of a bounded
operator coupled with the fact that this coincides with
the norm of its adjoint (see Ref. 6, p. 201), we have

N(E)=Slflp ITEY¥ NI, (f e L¥D), lifll,=1).
Since T(E)*=V(H, - E)™", we may use (33) to obtain a
bound on |IT(E)*f |l

ITEV I, <M ((H, = E)*f)y .

Letting the U,’s be the orthonormal eigenvectors of H,
corresponding to E,, we can expand f in the series

f=’§ AkUk,
where A,=(f,U,), and =|A,|?=1. Applying (H,-E) ' to
f and using Corollary 2.1,

- > E,+A
<(H1_E) 1f>V2=Z_k_=L§’Ak|Z'
& TE,~E|

Hence,

Ex+2 /2
IT(EY*F I, sMm’ sgp(——-k——Lz)

|E,—E|
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Since the right side of the last inequality is independent
of f, and since |E,-E|=1E,-E|,

Eet+2, \1/?
N(E) €M’ su ———-——-‘L—> y
(B) k;op (lEk—Elz

which is the lower half of (38). To obtain a bound on the
right side of this inequality, we may use ordinary
calculus to maximize

a)=(t/|t-F[2, ¢=0.

This gives the far right term in (38). Finally, by
Theorem 3. 6, if any one of the terms in (38) is less than
unity, (29), (30), and (31) must converge. QED

We remark that Corollary 2 implies that by choosing
|F| large and fixing o, 0< @ < 27, the expansions (28),
(29), and (30) can always be made to converge.

If we replace V by vV, where y is a real constant,
Theorem 3.6 implies that the expansion

R,(E) :Rl(E)+IZ__:, (- D)y 1T(E)'U(E)
will converge for all y such that

v |nE) <1

We note that if E is real, it is relatively easy to show
that to each order of the coupling constant y, the ap-
proximation to R,(E) is self-adjoint. As Duke and
Wigner® point out, a self-adjoint approximation to the
R matrix always yields a unitary approximation to the
collision matrix. Moreover, the approximation to the
collision matrix will be in terms of rational functions
because the R-matrix approximation is in terms of
polynomials. (The usual Born approximation to the col-
lision matrix is a polynomial approximation and is only
approximately unitary. This would seem to be a disad-
vantage of the method. ) Finally, since the approximation
is rational, there is some hope that it remains valid
even when the expansion for the R matrix is not.

4. CONCLUDING REMARKS

First of all, we wish to remark that the theory we
have constructed can easily be extended to spin depen-
dent systems, as long as the spin dependence in the
Hamiltonian is confined to the operator V. Secondly, the
R matrix potentially contains all the information re-
quired to solve eigenvalue problems of the form

(+VW,=EU,

aAUk:bUkIS
or even,
U,|s=0.

Finally, it should be possible to extend the ideas behind
the R matrix to higher-order partial differential equa-
tions, although this will surely require a modification of
the approach we have used.
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The Clebsch-Gordan problem and coefficients for the
three-dimensional Lorentz group in a continuous basis. 111
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Along the lines of two previous papers, the Clebsch—Gordan problem for products of representations
of SU(1, 1) of the form D* ® C is related to the properties of the Lorentz group O(3, 1). The
structure of the Clebsch—Gordan series for this case is understood in a new way as being due to the
properties of O(3, 1) spherical harmonics on the timelike and spacelike hyperboloids in Minkowski
space. The Clebsch—Gordan coefficients in a continuous basis are then evaluated.

INTRODUCTION

In the two previous papers! of this series, we have
described a new approach to the Clebsch—Gordan prob-
lem for the three-dimensional Lorentz group 0(2,1).
We are concerned here with direct products of unitary
irreducible representations (UIR’s) of this group, and
with decomposing such direct products into direct sums
of UIR’s. Using a particular construction of the unitary
representations of 0(2,1), we showed that the Clebsch—
Gordan problem for this group can be related to prop-
erties of special representations of four -dimensional
(pseudo) orthogonal groups. Thus for example, the re-
duction of products of the form D*®D* (or D"® D} is
achieved by analyzing the representation of the ortho-
gonal group O(4) carried by functions on the unit sphere
in four (real) dimensions; and in the case of products of
the form D*® D~ we were led to the group 0(2,2). In
these two cases, the representations of the appropriate
four-dimensional group were needed in an O(2) ® O(2)
basis, and our analysis led also to explicit expressions
for the Clebsch—Gordan coefficients of 0(2,1) in an
0(1, 1) basis.

The present paper is devoted to the analysis of direct
product representations of the type D* ® C and the relat-
ed type D" ®C, and to the computation of the related
Clebsch—Gordan coefficients in the O(1, 1) basis. The
“symmetry group” we shall be led to in the present case
is the homogeneous Lorentz group O(3, 1); the solution
of our problem entails the construction of a complete
set of “spherical harmonics” for this group. There is a
particular property of the group O(3,1) that makes the
analysis of products of the form D* ® C specially in-
teresting, in comparison to those of forms D* ® D* and
C®C, In the latter cases, the symmetry groups one is
led to are O(4) and 0(2, 2), with a suitable subgroup
being singled out. (The case C ®C will be analyzed in
the next and concluding, paper of this sequence.) Now
both the groups O(4) and 0(2,2) can be expressed, local-
ly, as direct products of “smaller” groups, namely one
has O(4)= 0(3) ® 0(3) and 0(2,2)~0(2,1)® 0(2,1).
Making use of this fact, the problem of constructing
spherical harmonics in these two cases simplifies a
great deal: In fact, this construction is provided by the
regular representations of O(3) and 0(2, 1), respective-
ly. [In dealing with D*® D" and C ® C, we need the 0(2, 2)
spherical harmonics in two different descriptions, and
these are provided by the regular representation of
0(2, 1) in two different descriptions. ] In contrast, the
group O(3,1) does not break up in this way, so the con-
struction of its spherical harmonics is decidedly non-
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trivial. With respect to O(3, 1), four-dimensional real
space (Minkowski space) splits up into two distinct types
of regions, the timelike and the spacelike regions, with
very different properties, There is one set of spherical
harmonics associated with each region. For the time-
like region, they are relatively easy to construct,?
since one can fall back upon the theory of the regular
representation of O(3, 1). For the spacelike region, this
is not the case, and the construction of the spherical
harmonics is somewhat harder. It involves analyzing
the representation of O(3, 1) associated with functions
on the spacelike hyperboloid in Minkowski space, and
we have carried out this analysis elsewhere.® The re-
sults of this analysis will be used here.

In Sec. 1 we set up the unitary representation )*®
of 0(2,1), the components /) and C in the product being
the generating representations for the UIR’s D* and C¢
of 0(2,1). We show how the group O(3,1) describes the
symmetry properties of the representation /) ® (, set
up the relations among the various Casimir operators,
and specify the natures of the uncoupled and coupled
basis vectors for the total Hilbert space, with whose
help the C—G series and coefficients are to be deter-
mined. Section 2 explains the construction of a com-~
plete set of O(3, 1) spherical harmonics for the timelike
regions in the space with metric (+++-), while Sec. 3
contains the analogous steps for the spacelike region.
With the help of these results, the two types of basis
vectors are constructed in Sec. 4, and from their
“quantum numbers” one immediately reads off the .
structure of the C—G series for a product of the form
D*®C. Section 5 calculates the C—G coefficients in the
0O(1, 1) basis for this kind of product and in Sec. 6 the
related ones for D" ®C are given.

Appendix A describes the calculations concerning the
normalization of wavefunctions belonging to the UIR
{j,, 0} of 0O(3,1). Appendix B contains the details regard-
ing the determination of a phase associated with the oc-

_currence of the UIR’s (s,¢) in the product D, ®C:.

1. THE REPRESENTATION 2*® ¢ OF SU(1,1)

Let us combine the two unitary representations /¢
and ( of SU(1,1), acting in Hilbert spaces //(+, 12) and
#(C, 34), respectively, into their direct product )" ® (.
Here, 1 and 2 label the variables used in constructing
the generators of /*, 3 and 4 those of , in the manner
of Sec. II of Paper I. The space / for the product
representation /* ® ( is the product #(+, 12) ® H((, 34)
and so consists of functions f(x,, x,, x5, x,) subject to

Copyright © 1974 American Institute of Physics 1643
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IAl2= S22 S S g i |y, 2y g, ) 2 <.

(1.3)

We then have the four sets of oscillator operators aj, a§
obeying

[aj, al= 8 9 [aj, a]= [a’;, al]=0,

_zif .2 . i 3
4=7r (it d=rr(na),
i, k=1,2,3,4.  (1.2)

Using them, the three generators J, of /)*® (, which
are sums of the individual generators J (+, 12) and
J,(C,34), are

Jo= %(alal + a;az +1+ a;as - a;a4),

Jy = i(ala] + alal + a,a, + a,a, + alal - ala} + a,a, - a,a,),
Jy=(—i/4)ajal + ala} — a,a, - a,a, + alal + ala),

(1.3)

The invariance properties of these generators become
evident if in place of the a’s and their adjoints, we work

- a,a; — a,a,).

with operators b,, b}, and a metric tensor g,, as follows:

_ _ ot
by=a,, by=a, by=a;, b,=-a,

Bu=8n=8un==8u=1, g,=0 if u+v (1.4)

The tensors g,,, g"” will be used henceforth for lower-
ing and raising indices. Equation (1.2) can then be
transcribed into this form
6., 0])=g,,, [b4,0,]=[0},0[]=0,
bu,:(_i/ﬁ)(xu_-'_au), bhz(z/ﬁ)(xu_au)’

d

0
W= 5w (1.5)

At the same time, the J, take on a simple appearance:
Jo=3(g"bb, +2),
J=5g" (bl +b,b,),
Jy=(-i/4)g"(bLb] -b,b,). (1.6)

It is immediately evident from the two sets of equations
above that both the basic commutation rules among the
primitive variables b,, b and the forms of the genera-
tors J, are preserved when we perform a real linear
transformation

x,—~0,"%,, b,—~0,%,, bl—~0,b (1.7)

that leaves the indefinite quadratic form ®*=x*x, in-
variant. The space // thus carries a unitary representa-
tion of the group of the matrices !0, *|l and this repre-
sentation commutes with the representation /)t ® ( of
SU(1,1). The group of matrices |0, || contains the
identity component which we shall refer to as 0(3, 1),
and three other components containing improper trans-
formations. The identity component is generated by six

operators M, , which are
M,,=~M, =iblb, -bb,)=ilx,d,-x,,). (1.8)

Among the improper transformations it will suffice to
consider these two:

[R':f(xu)_'f(_xu)’
(1.9)
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By 1 flxy, %5, %5, %,) "f(xuxzy = X3y =X4).

These are not independent of one another in the sense
that

IR = B, exp(imM,,). (1.10)

In other words, R and B, belong to the same connected
component of the full group of transformations (1.7).
The operator IR has the virtue of commuting with the
transformations of 0(3,1), i.e.,

IRMMJR=MW’ (1.11)
The symmetry properties of the operators J, that we
shall use are thus summarized by

v,,M,, ]=0, RJIR=J,. (1.12)

For the individual sets of generators of /J* and (, we
have only "

[J,(+,12) or J (C, 34), M,, or M,, or R]=0,

’

(1.13)

Let us now establish the relations among the various
Casimir operators. From the analysis in I we know that
the SU(1, 1) Casimir operators belonging to the repre-
sentations /* and ( are simple functions of M,, and M,,,
respectively:

Q12=%(1 —Mfz), Qs = %(1 +M§4)' (1.14)

Turning to O(3, 1), it turns out as in the previous papers
(Ref. 1) that we are dealing here with a special kind of
representation of this group, in which one of the two in-
dependent Casimir invariants vanishes identically.
Namely, from the form of M, it follows that the in-
variant €,,,, M**M"°=0, The other O(3, 1) invariant is
also the SU(1, 1) invariant @ for the “total” representa-

tion

Q= () + () - (JP=—-3MP=—$M¥M,,.  (1.15)

We turn next to the two types of basis vectors for #
that we wish to set up. Consider first the uncoupled
basis. These vectors are direct products of basis vec-
tors drawn from individual UIR’s D; and C, picked out of
Dr and (, respectively. In setting up the basis within
C:, we make use of the operator Asq that implements the
outer automorphism 7 of SU(1,1), as explained in Sec.
II of I. Recall that 7:J, = =J,,J, = ~d},J, = +J, is im-
plemented within the representation ( acting on #((, 34)
by the operator A,,; thus

Ass :f(xs’.x4) — fxy, %5),
Asddo(C, 34), J,(C, 34), 1,(C, 34)}Aa,
={-4(C, 34), - 4,(C, 34), J,(C, 34)}- (1.16)

This same operator #,, has an obvious definition on //;
it is not a symmetry of the total generators J,. Recall
also that within the representation  on 4(C, 34), the
eigenvalue +1 for the operator B, [defined in Eq. (1.9)]
selects continuous class UIR’s C; of integral type, i.e.,
with ¢ =0; while the eigenvalue —1 picks out the half-
integral UIR’s with e=%. In the uncoupled basis vectors
for #, then, the following mutually commuting operators
should be diagonal: M,, (hence @,,), J,(+,12); M,, (hence
Qs), 5(C,34), Ay, and B,,. Because of the relation
(1.10), we can replace P, in this list by R. This is
helpful because IR commutes with O(3,1) generators M,
while F,, does not. The eigenvalue of Ris simply cor-
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related with the integral or half -integral nature of a
product representation D; ® C:. Since even (0dd) values
of M,, go with half-integral (integral) UIR’s D} within
[*, and because of the connection between P, and ¢
noted above, Eq. (1.10) shows that in case R=-1 the
total representation of SU(1, 1) is of integral type, and
with[R=+1 it is of half-integral type.

The coupled basis in 4 should consist of simultaneous
eigenvectors for the operators M,, (hence Qy,), M,,
(hence Q.,); R, M? (hence Q), J,, and in case @> g,
also the operator implementing 7 within the product
representation. (Notice that the operators M,,, M, R,
and J, will be diagonal in both bases.) The first step to-
wards construction of the coupled basis vectors is to
find a complete set of O(3, 1)-spherical harmonics in
Minkowski space, which are also eigenfunctions of R;
and in particular to set these up with M,, and M, both

diagonal. This will be done in the following two sections.

We will conclude this section by recording the equations
that express the *angular” dependences of J, entirely in
terms of the operator M? (or Q); the steps are identical
to those leading to Eq. (1.16) of Paper II, and the re-
sults are

Jy=5(x? = (1/x®)(x+ 3)* = (2/x%)x - 3 - (4/%°)Q),
Ji=—Hx?+ (1 /) x- 8P+ (2/xH)x -0 + (4/x%)Q),

Jy=(=i/2)(x-3+2), x-3=x"d,. (1.17)
2.0(3,1) SPHERICAL HARMONICS IN THE
TIMELIKE REGION

With respect to the action of the group 0(3,1), Min-
kowski space splits up into three invariant regions: the
positive timelike region V; in which x*<0, x,> 0; the
spacelike region V, where x> 0; and the negative time-
like region V, with x2<0, x,<0, (The light cone x*=0
may be ignored since it is of lower dimensionality.)
Correspondingly, each function f(x) in // can be dis-
played as a column vector of three functions f,(x), f,(x),
f+(x) giving the values of f(x) for x€ V,, V,, V5,
respectively:

f1(x)
f= fz(x) ’
3(x)

Irl2= f,, At Pa%x + [ |fatol?d*c+ [, |fs(x)|2d*.
(2. 1)

This also exhibits #/ as the direct sum of three mutually
orthogonal subspaces 4,, /., #, consisting of square~
integrable functions that are nonvanishing in V,, V,, V,,
respectively:

H=H,® H,® H,. (2.2)

Each of these subspaces is invariant under O(3, 1); under
R, /, and //, get interchanged, while 4, is invariant. In
both kinds of bases for /4 that we wish to construct, IR
will be diagonal. If f(x) is an eigenfunction of R, then it
is fully specified by the pair of functions f,(x) and f,(x),
with the former being unrestricted except for square-
integrability and the latter being even or odd as the case
may be:
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R=11=>f,(x)=1f,(-x),
fo=%)=xf,(x), 2.3)

And for such elements in //, the square of the norm is
simply

Irkz=2f, 1atPa%+ [ 5| *d . (2.4)

We shall in the sequel deal only with eigenfunctions of R.

xe ¥,

xe ¥,

The problem of setting up O(3, 1) spherical harmonics
for the regions V, and V, involves the following: First we
must introduce suitable “radial” and “angular” coor-
dinates for each region, such that only the latter are
altered by the action of O(3, 1); next we must construct
complete orthonormal bases of functions of the angular
variables, such that they belong to definite UIR’s of
0(3, 1) and such that the angular dependences of ele-
ments f,(x) in A, and £,(x) in 4, may be expanded in
terms of the corresponding basis. The kinds of UIR’s of
0(3, 1) that one finds in this process are somewhat
special. Recall that the UIR’s of O(3,1)? can be labelled
in the form {7, p}: j, can take on any of the values
0,1,2,..., while pis a real number. Except for the
fact that {0, p} and {0, - p} denote equivalent UIR’s a pair
jo, P labels one UIR uniquely. Now the connection be-
tween the Casimir invariants of 0(3,1) and the param-
eters j,, p is the following:

ME=M"M,, =2(f - p?-1),
M"Y pIPe =j0p.

€400 (2.5)
But because of the special form of the O(3, 1) generators
in Eq. (1.8), we have noted that the second invariant
vanishes, so only the UIR’s {7, 0} and {0, p} will appear
in our work. This is true for //,, as well as /,. [The
supplementary series of UIR’s of O(3,1) are not relevant
here.] It now turns out that in the subspace #, contain-
ing functions over V, we encounter just the UIR’s {0, p}
in the form of a direct integral from p=0to p=, with
multiplicity one. This can be understood either from the
structure of the regular representation of 0(3,1)2 or by
the methods of integral geometry.® On the other hand,
in the subspace of #/, consisting of functions with R=+1,
the UIR’s {0, p} appear as a direct integral with mul-
tiplicity one from p=0 to p=<, and in addition each of
the UIR’s {j,, 0} for j,=2,4,..., appears once each;
while if R= -1, we have the same continuum of UIR’s
as before but the discrete component consists of {j,, 0}
for j,=1,3,5,..., once each. These results for //; can
be obtained using the methods of integral geometry. >

(In all of this, we refer just to the angular dependences
of functions in #, and #,.) We must now set up spheri-
cal harmonics corresponding to these various UIR’s,
and labelled by the eigenvalues of M,, and M,, as well.
There are two ways in which one can go about this job.
One is to use the methods of integral geometry, the
other is to write down differential equations obeyed by
the required functions and find appropriate solutions.
We will use a judicious mixture of both approaches. In
particular, in dealing with the UIR’s {0, p} which appear
both in 4, and in #/,, we shall rely on the integral
geometric approach,® since that will ensure that the
corresponding basis functions transform in the same
manner under O(3,1), whether defined in V; or in V,.
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We proceed with the determination of the spherical
functions for the region V,. Since M,, and M,, are sought
to be diagonal, we introduce new coordinates in V, as
follows:

x, =vsinh(£/2) cosy, x,=7vsinh(£/2)siny,
%, =7cosh(£/2) sinhn, x,=7cosh(£/2)coshn,

O0<r<ew, O0st<w, —w<n<w 0syp<2m,
d*x =4v®drsinhEdgdndy. (2.6)
Then the operators M,, and M,, have the forms
, 8 . 9
M12=15;b' , M34=-15'ﬁ . 2.7

The operator M,, has exactly the same form as the cor-
responding operator introduced in I in order to reduce
the representation /* [see Eq. (2.12) of I]; similarly,
M,, coincides with the operator S,, used in the analysis
of the representation ( [see Eqs. (2.33—35) of I]. To
single out the particular product D} ® C¢ in /* ® C, where
q=1+s? with s >0, we must choose the eigenvalues of
M,, and M,, to be (22 -1) and 2s, respectively. This
determines the ¢ and 7 dependences of the 0(3,1)
spherical harmonic to be

exp(- i(2k - 1)¥] exp(2ésn). (2.8)

Now it is known that within a UIR {j,, p} of O(3, 1) the
operators M,, and M,, form a complete commuting set,
with the eigenvalues of M,, being all the integers from
- to «, those of M,, being all real numbers.® The
spherical harmonic belonging to the UIR {0, p} is then
just the factors in (2. 8) times a definite function of ¢
which will depend on &, s, and p as parameters. To
determine this function we use the integral geometry
approach.

In general, a function f(£, 1, ¥) can be thought of as a
function on the positive timelike hyperboloid 2= -1,
x4> 0. The O(3, 1) invariant measure on this hyperboloid
is the part of the total measure d* in Eq. (2. 6) that
depends on £, 71, and . We will denote a point on this
unit timelike hyperboloid by x so that we can inter-
changeably write f(x) or f(£, 1, ¢). Then with each such
(square-integrable) function f(x) we associate a function
F(l;p), where [ is a positive lightlike vector and 0 <p
<, according to

F(i;p)=% [ [ [ sinh&dEdndypfiE)(-% 1)1t

The function F(/;p) is homogeneous in ! of degree
_(ip - 1), and when f(x) is transformed under 0(3, 1),
F(l;p) transforms by the UIR {0, p}. One can recover
f(%) from F(l;p) and also express the scalar product of
f with itself, in terms of F. All these properties are
summarized by

(2.9)

F(al;p) =a™+*F(1;p), a>0, (2.10a)
£&) =@n) " p2dp [ da()(-% - F(I;p),  (2.100)
i [ [ [ sinhgdtdndy |fi%)|?

=) ["p2dp [ d2(D|F(L;0)]2. (2.10c)

By [ is meant a lightlike vector with 7,=1; dﬂff) is the
solid angle associated with the space-part of [. By
combining Eq. (2.10) with a proper choice of F(Z;p), we
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can obtain the spherical harmonics in the timelike
region,

Now, on comparing Eqgs. (1.15) and (2.5), it follows
that the spherical harmonics for which the total SU(1, 1)
Casimir operator @ has the eigenvalue % + 5’2 belong to
the UIR {0, 25’} of 0(3,1). A convenient parametrization
of ] is

l,=tcosy, l,=tsing, I,=tsinhg, I,=1fcoshi,
0<t<w, O0s@ <27, —0<{<o,
d(l) = dtanht de. (2.11)

Then, in order to arrive at the O(3, 1) spherical har-
monic belonging to the UIR {0, 25’} and also with M,
=(2k -1) and M,,=2s, we make the choice

F, o o(l;p)= (V2T /s")t* 42 expl - i(2k - 1)¢]
X exp(2ist)o(p - 2s’). (2.12)

For the associated function on the unit timelike hyper-
boloid we will write y;;_sl'f;;(g, 1, ¥)7; the negative sign
in the superscript indicates that these functions belong
to the region ¥, where x2< 0. Putting (2. 12) into (2. 10b)
we get in the first instance

s, 0) =Vau(s' /2n®) [ ae [ do
Xexpl2ist - (2k ~ 1)ip ]
x[cosh(£/2) cosh(¢ —n)
- sinh(£/2) cos(p — )] 1-2s,

By shifting ¢ and ¢ the expected factors in (2. 8) can be
separated and we get

Yania.(&, 1, 9)
=27 (s’ /273) exp|2isn — i(2k ~ 1)p]
x [ “a [ do expl2ist - i(2k - 1)¢
x[cosh(£/2) cosh ~ sinh(£/2) cose |2-2is,

(2.13)

(2.14)

The integrand can be expanded using the binominal
theorem as

[cosh(&/2) cosht — sinh(&/2) cosg |2-2i¥

s (=1 T(-2is’
~leosh(s/2)coshy -2 23 () T(-(n—l;i?s’)
£ cosy \"
X(tanh-z— m> . (2.15)

Interchanging the sum on » with the ¢ and ¢ integrations,
we find that these two integrations factorize, and each
can be done using standard formulas.® The remaining
sum on n is then recognized as leading to a hyper-
geometric function in the variable tanh?(£/2), and all in
all we get

ot 2s(£, 7, )
=277 (s’ /7)22% exp{2isn — i(2k - 1)y]
X[T(k + is’ +is)T(k +is’ —is)/T(2k)T(1 + 2is’)]
x[cosh(/2)] 22 sinh(/2) 2%
XF(k+is’ +is,k+is’ —is;2k;tanh®(£/2)). (2.16)

This final result can also be recast in a form where the
argument of the hypergeometric function is — sinh?(£/2):
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oy (£, 1, 9)
=~ 2i(27m)"3/222i5 exp[2isn ~ i(2k — 1))
x[T(k +is’ +is)T(k +is’ —is)/T(2L)T(2is")]
x[cosh(&/2)]?*s[sinh( £ /2) 2%
XF(k+is+is', k+is—is';2k;—sinh?(£/2)).  (2.17)

The normalization properties of these spherical har-
monics are determined by using Egs. {2.10c), (2.12);
indeed, the factors in Eq. (2.12) were chosen so that
we may have the following properties:

%[ sinhgdg [T dn 27 dy Y a0l n, YRS (E M, )
=8(s"” —5')8(s” ~5)b,,. (2.18)
With this, the problem of constructing a complete set
of O(3,1) spherical harmonics for the timelike region
V,, with M2, M,,, and M,, diagonal, is solved. Now we

turn to the construction of a similar complete set for the
region V,.

3.0(3,1) SPHERICAL HARMONICS IN THE
SPACELIKE REGION

This case is somewhat more complicated than the
previous one, and one has to combine the two approach-
es involving differential equations and integral geometry.
To begin with, different kinds of coordinates have to be
introduced in the two regions of V, corresponding to
x2Z x2, We define them as follows:

V>,
%, =7 cosh(£/2) cosy,
%, =rsinh(£/2) sinh7,

—00< §<co’

%, =7 cosh(£/2) siny,

x,=vsinh(£/2) coshn,
0<r<,
d*x=%7®dr|sinht| d& dndy;

(2) . 325 42
Vo? x> x5,

—o<<o, 0sy<2m,

(3.1a)
x, =rcos(6/2)cosy, x,=rcos(8/2)siny,
x,=7rsin(6 /2) coshn, x,=rsin(8/2)sinhn,
0<y<oo,

d*x=%r%dr|siné| do dndy.

-TsfsT, —c0<n<o, 0O<yp<2m,
(3. 1)

Then, a function f,(x) defined for x = V, has to be thought
of as a pair of functions, one defined in V,*’ and the
other in V,), and we have

£ =L 38, m, 0); £2 (36, m, 9},
S Ve Pate=1 [ Jan [ ap friar
x{ [.2 |sinhg| £ (r; 8, 9)| s
+ [7 |sind| |£2(r;0,m,9)|? d6}. (3.2)
The R operation can be described in the new variables
as follows:
p—~ Y+,
PP+, (3.3)

If £,{x) is an eigenfunction of R, then in place of (3.2) we
have a simpler form for the squared norm of f,(x).

Rix—-—x:(—-§, n—1 in V¥

-0, n—1 in V@,

Now the expressions for M,, and M,, are uniformly
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given in both V¥’ and V;®’ by Eq. (2.7) again, while M?>
is given as

1 1 -cosht 92
FMP = — + 2
agz cothg 5 sinh2£ { 5 e
1+cosh¢ 3%
2 o’
== 2 cote—— . S S L L
rTE 298  sin26 2 P
1+cosf 2
___;_O.S_ 6—27—2}’ in V2 and V,®, respectively.

(3.4)
Once again the requirement that we choose eigenfunc-
tions of M,, and M,, with eigenvalues (2% - 1) and 2s,
respectively, in order to isolate the product D} ®CYy /4).s?
from /*® ( fixes the ¢ and 717 dependences of the func-
tions f,*) and £,

fo(x) =expl - i(2k = 1) = 2isn}{ £, (7 £); 7527 ;6)}. 6.9
3.5

Now the functions f,**(r;£) and f,*’(r;6) must be eigen-
functions of @ =— $M? with appropriate eigenvalues if
they are to be O(3, 1) spherical harmonics and this gives
us two differential equations in £ and @ [remember that
ris an 0(3,1) invariant] for these functions via Eq.
(3.4). We shall have to use these differential equations
when we want to set up O(3, 1) spherical harmonics be-
longing to the UIR {j,, 0}. But before that let us take up
the comparatively simpler case of the spherical har-
monics belonging to the UIR {0, p} which will serve as
basis vectors for the UIR sz" of SU(1, 1) obtained in the
reduction of D*®C;. For the construction of these
spherical harmonics we prefer to use the method of in-
tegral geometry (rather than solve the differential equa-
tions in the two regions V,*” and V,*’ and match solutions
at the boundary) not only because it is simpler but also
because it gives us a way of ensuring that the spherical
harmonics on the timelike and spacelike hyperboloids
have identical transformation properties under 0(3, 1).
This is a necessary condition to have in our formalism.

The reduction of the space of (square-integrable)
functions on the unit spacelike hyperboloid into UIR’s
of O(3,1) have been performed by us elsewhere® and we
shall only quote our results here.

Let f(x) be a (square-integrable) function on the unit
spacelike hyperboloid (¥2=1). Without loss of generality
we can choose it to be an eigenfunction of R with eigen-
value € =+1, With every such function f,(x) we can asso-
ciate two functions: F (I;p) defined on the positive light
cone I*=0, [,>0, and transforming via the UIR {0, p} of

0(3,1) and F(T b;n) which is a function of two mutually
orthogonal unit 3-vectors T and b and transforming
under O(3,1) via the UIR {n, 0}. (T and b are actually the
space parts of a hghthke vector [ and a spacelike vector
b satisfying: 2=0, l =1, »¥*=1, 5,=0, and I+ b=0; see
Refs. 3 and 5.) n runs over all posmve even 1ntegers
for e=+1 and over all positive odd integers for e=—1,
These functions are defined in terms of £.(¥) as follows:

F (Lp) = [ (dx)f,(R)]x - 1|24,

F(1,b;n) :%f (dx)f.(x) exp(inoz)ﬁ(;c- 1- xy).

(dx) stands for the 0O(3, 1) invariant measure on the

(3.6a)
(3.6b)
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spacelike hyperboloid and the angle ¢ in Eq. (3. 6b)
(0 <@ <27) is to be determined from the relation

x-x]d=R{a;)b, (3.7)

where R(o;l) denotes a rotation through an angle a about
the direction of 1. The basic result of integral geometry
is that the part of f.(¥) that transforms via the UIR’s
{0,p}, 0<p<e, can be obtained (in fully reduced form)
in terms of F.(/;p) and the part transforming via the
UIR’s {n, 0}, #=1,2, -+, can similarly be expressed in
terms of F(1,b;n). Moreover, the squared norm of f,
can also be written down in terms of the latter two
functions:

f &) =(167%1 ["p2dp [ (dDF (;p)6(% - 1+1)
+eb(x-1-1)]+(2 /1r2)§} n [ dQ)F(, b;n)

X8(x-1—-x,), (3.8a)
[ (@) |r.G)12= 167" ["p*dp [ a@(V)| F (i;p)|*
+(4/m) 2 [ dQ) | FQ, byn) |2 (3.8b)

(dl)Ais the O(3, 1) invariant measure on the light cone and
dQu(1) the solid angle element associated with the direc-
tion of 1. [In Eq. (3.8b), F,(I;p) stands for the restric-
tion of F,(I;p) to lightlike vectors ! with /,=1.] From
these equations it can be seen that in order to obtain the
0(3,1) spherical harmonic belonging to the UIR {0,2s"}
in a basis where R=¢, M, =(2k ~1), and M,,=2s we
must set

F (Lp)=F, .t ¢;p)

= (VAT /s")72+%% expl2ist — i(2k - Do [6(p - 25"),
(3.92)
F(1,b;n)=0, (3. 9b)
In Eq. (3.9a) we have adopted the same parameteriza-
tion of I as the one given in Eq. (2.11). For the asso-
ciated spherical harmonics in V,*) and V,®’ we shall
write {5590 (£,m,¥) and {55076, 1, ¥), respectively.
The superscript “+” indicates that these functions are
defined on the spacelike hyperboloid #?=1 and for future
convenience we have defined ¢’ as

for R=e=+1

=0 for R=e=-~-1. (3.10)

Before we proceed to evaluate these functions, a word
about their transformation properties: {/;,'3*), has the
same transformation property under 0(3,1) as Y32,
defined in Eq. (2. 13) since both these functions are de-
fined in a covariant fashion in terms of the same func-
tion F(I; p) on the light cone. An O(3, 1) transformation
on both the y ’s can therefore be translated into the
corresponding transformation acting on F(I; p). Sub-
stituting Eq. (3.9) in Eq. (3.8a) we find:

SSNE, , ) = VAT (57 /4n°) [T dr £ [ 7 dEexp(2ist)
X [** dp exp [~ i(2k - 1)¢ ] {6[¢ cosh(£/2)
X cos( — @) - tsinh(£/2) cosh(n — &) + 11
+¢8{t cosh(£/2) cos(y - @) — t sinh(£/2)
xcosh(n - ¢) - 1]}, (3.11a)
5502(0, M, ¥) = VAT (s7 /47%) [ dt £ [ " At exp(2ist)

1
o
€'=73

xfoh dy expl - i(2k — 1)@ ]{5[ cos(6 /2)
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X cos(y — @) — ¢sin(6/2) sinh(n—¢) +1]
+€6[tcos(6/2) cos(ip =) - tsin(6 /2)
xcosh(n —¢) - 1]} (3.11p)

By shifting £ and ¢ the expected factors of n and
[given in Eq. (2.8)] can be extracted. After a change of
variable from ¢ to 2= 1/f we obtain

e (£, 1, ¥) = VAT (s’ /47°) exp(2isn - i(2k - 1)¢]
X f: dz z‘l'z""f_:dg exp(-2is¢)
x [.* dp expli(2k - 1)¢ [{6[cosh(£/2)
X cos¢ —sinh(£/2) cosht + z]
+ed[cosh(£/2) cos@ — sinh(£/2) cosh -z},
(8.12a)
s ae(8,n, ¥) = VAT (s* /47°) expl2isn - i(2k - 1)y]
X [°dz 277" [~ dt exp(-2ist)
x [, do expli(2k - 1) 1{6[cos(6 /2) cose
~sin(8/2) sinh¢ + z] +ed[cos(8 /2) cosy
~sin(6/2) sinh¢ - z]}. (3.12b)

In order to carry out these integrations we employ the
plane-wave representation for the delta function:

8(p)=(1/27) [ " exp(ipy) dy.

Using this representation in Egs. (3. 12a) and (3. 12b) one
finds that the z, {, and ¢ integrations factorize and can
be done using standard formulas. ° One is then left with a
final y-integration over a product of two (generalized)
Bessel functions and a power of ¥y which can also be
evaluated. !° The final result is

+(s'é')1(£’ n, P)=-— \/4_ﬂ(sl/81r3)22i5'r(_ Zis')[exp(— s'm)

2k-1,2s

(3.13)

+eexp(s'm) ] exp[2isn - i(2k - 1) ]
X({exp[sﬂ -i(2k — 1)(77/2)]

I'(k+is+is’)
T(k—is —is’)

XT'(—2is)[sinh(&/2)?*s[cosh(£/2)]2*

XF(k+is+is’,k+is—is';1+2is;

+€ exp[— ST+ z(2k - 1)(‘"/2)]}

— sinh®(£/2)) + (s — — s)) . for £>0,
(3. 14a)
SN (= £, m, p) =e(= 122 YR (£, , ), (3. 14b)

e 22(0,m, ) = VAT (s’ /87°)224°T (~ 2is’) exp(s'T)

+¢ exp(— s'm)] expl2isn — i(2k - 1)y)
x{exp[— s +i(2k — 1)(n/2)]

+eexplem -2k - 1)(r /D] (SR His)

T(k —is —is’)
X[sin(6/2)] %<[cos(6 /2) =
XF(k+is+is' k+is—is’;1+2is;
sin?(6/2)) + (s — — s)) , for8=0,
(3. 14¢)

+(s’¢’)2

2e1, 28 (= 0,1, P)=€(= 1)* Y2502 (0, 1, 9). (3. 144d)
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In writing Eqs. (3. 14b) and (3. 14d) we have made use of
(3.3). The normalization of these spherical harmonics
is determined by Eq. (3. 8b). We have in fact chosen the
factors in Eq. (3.9a) so as to have

3 [oan [T ayl [ ag|sioh | YRere (5, )
XY & m, ) + [T de|sind]| Y5000, m, $)*

X U8 02(8, 1, )] = (5™ = $7)8,0m B(s” = $)0 (3.15)

This completes the construction of the O(3, 1) spheri-
cal harmonics belonging to the UIR {0, 2s’}. We now turn
to the problem of finding the remaining discrete set of
spherical harmonics that appear on the spacelike
hyperboloid.

The construction of O(3, 1) spherical harmonics be-
longing to the UIR’s {»,0} for n=1,2,3,-- is some-
what more involved than the previous case, Here it is
difficult to make direct use of the integral representa-
tion for the spherical harmonics that we get from the
method of integral geometry and we will find it profita-
ble to start instead with the differential equations for
these functions, As before the n and ¥ dependences are
of the standard form

i (&, 1, 9) =expl2isn - i(2k - YIY;20%,(8),
(3. 16a)}

5202.(6,m, ) =expl2isn - i(2k - 1)9]Y552,(6), (3. 16b)
where n=2k" — 1, The functions Y are solutions of the
following second-order differential equations:

a a1 _ (@r-1y 1
(dgz teotht o+ g -3t simeE

(3. 17a)

2p-1, 25

X (X2 + A% 4 2)0% cosh 1;‘)) Y0 (8)=0,

2 7 2
(2?97”0"92% - 4l = 3 L. sir1129 (A% 4257 4+ 200 cose))
XY %0%(6)=0, (3. 17b)

where x=s +i{k —3). Further, these functions have to be
normalizable and mutually orthogonal for different val-
ues of %’ but fixed k and s.

Let us first consider Eq. (3.17a). If we denote by
¢(a, b;c;z) a general solution of the hypergeometric
equation in z with parameters a, b, and ¢, it is straight-
forward to verify that a solution of Eq. (3.17a) is of the
form

Y+(k')1 ( g)

2k-1, 2s

=[cosh(£/2)] @ [sinh?(£/2)]
X2 -k—k —is, 3 —k+E —is;1 - 2is;—sinh®(£/2)).
(3.18)

The specific solution ¢ that we must choose is deter~
mined by the condition or normalizability:

[T dEsinh | Y500%, ()] <o, (3.19)

[Here we have restricted the range of & taking account of
the fact that for R=¢, Y3&% (- £)=e(- 1)1 803 (8). ]
Now it is easily checked that any two linearly indepen-~
dent solutions ¢ with the indicated parameters are well
behaved at £=0. However, for £ —«, one sees from the

indicial equation that one solution goes like a constant,
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while the other goes as {sinh?(£/2))?**"*, Clearly, only
the former solution is acceptable and thus we know
Y+ yp to a normalization constant:

Y1 (g)

2k-1,2¢
=N, (cosh(¢/2)) @-»

¥ ( T(2is)T(2E")
Ik +E =L +is)T(k —k+} +is)

(sinh*(£/2))is

XF(3—k—Fk —is, 3 ~k+Fk —is;1 -2is;—sinh2(£/2))

+(s~»—s)). (3.20)

The determination of N, involves some calculation which
we carry out in Appendix A. The result is
T{+Fk —5+is)
TR (k~Fk +% +is) °
Turning now to the case of ¥;*P% (6) it can be checked
from Eq. (3.17b) that it must be of the form

Y+(k')2 (9)

2p-1,2s

Ny = (= )12k - 1)1/2 (3.21)

=[cos(8 /2)] @V [sin%(6/2) |
X3~k =k —is,t=k+E —is;1=2is: sin?(6/2)).

(3.22)
The condition of normalizability says

[T d6 sin6 | Y85 (8) % <. (3.23)

[As before we have restricted the range of 6 using: R=¢,
V0%, (= ) =e(= 1)+ ¥ )2 (6).] ¢ is necessarily well
behaved at 8 =0 for the indicated parameters while for

8 =7 the indicial equation shows that one solution goes
as a constant while the other goes like [cos?(8/2) ]2,
Now only the latter solution is acceptable and thus we
know Y**72 yp to a normalization factor:

Y+(12')2 (9)

2k-1,2s
=N,[cos(8/2) ]2+

( T(2i5)T(2k)
X\T(k+k =1 +is)TC ~k + k' +is)

[sin*(6/2)}- i
XF(z+k—F ~is,k+k -} —is; 1 - 2is; sin’(6 /2))

+(s - S)). (3.24)

The determination of N, is again relegated to Appendix
A. We find

T(k+k ~%+is)

N, = (= 1)2%"19 (9p! — 1)1/2
2= R = ) T e 1 4 i) ¢

(3.25)

Finally, a word about the normalization. The re-
striction of the ranges of £ and ¢ using the symmetry
under R and the fact that for R=+1 we have 2’ half-odd
infegral while for R= ~1 we have &’ integral imply that

© uy ¥ ,
3l [, dt sinhg Y3 DL (£ Y, 504 (8)
’ 3 +(p2 + (R’ -
+ [[7d0sind Y572 (0)* V3502, (6)] =6,

2%-1, 25 281, 25

(3. 26)
only if either %’ and k" are both integral or they are both
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half-odd integral. The'above equation will not in general
hold if one of k’ and %” is integral while the other is
half-odd integral.

This completes the task of setting up a complete set
of spherical harmonics on the spacelike hyperboloid
x®*=1 in a basis where R=¢, M,,=2k -1, M,,=2s, and

==$M?=1+s'2or k(1 -k').

4. BASIS VECTORS FOR ¥ AND THE C-G
SERIES FOR D'®C

In this section we shall obtain the two types of basis
vectors that we had specified in Sec. 1. Then, from the
structure of coupled basis vectors we shall directly read
off the Clebsch—Gordan series for the productD; ® C;.

We start with the uncoupled basis vectors &. For the
product D; ®C{ ,,,.» we shall use the notation &} e,
where p(p’) is the eigenvalue of J,(+, 12)(J,(C, 34)) and the
eigenvalue of A.,. Such a vector will be the product of a
function of x;, x, and another function of x,, x,. Using
the analyses of the representations /)* and C of SU(1,1)
given in Sec. II of I, we see that we must introduce tri-
gonometric variables for x,, x; as in Eq. (2.12) of I and
hyperbolic variables for x,, x, as in Eq. (2.33) of I

%, =pcosy, x,=psing, (4. 1a)
5] > | %3] : x5 =(sgnxy)p’ sinhe,  x,=(sgnx,)p’ cosha,
(4. 1b)

%, = (sgnx,)p’ sinha,
(4.1c)

lacg| > | %] : %5 = (sgnx,)p’ cosha,

Then apart from numerical factors & is given by

& #6) ~exp[ - i(2k - 1)p J(p)**#™* ® exp(2is)(p’)*#~! (31}

(4.2)

The first factor in the direct product is the above-
mentioned function of x, and x,, while the second factor
is a column vector with the upper entry corresponding to
the region x,> x| and the lower one corresponding to
x> | x,|. We must now relate the parameters p, p’, ¢
and a to the variables », 7, ¥, and £ or 6 that we have
introduced in previous sections to parametrize the time-
like region V, and the spacelike regions V,*) and V,*.
We must then rewrite & in the form of a column vector
with three entries giving its values in the above three
regions. First of all from Eqgs. (2.6), (3.1), and (4.1)
we find the following relations between the two sets of
parameters:

V,:p=7sinh(£/2), @=¢, p’'=rcosh(£/2), a=n,
(4. 3a)

V0 p=rcosh(£/2), ¢=y, p'=r|sinh(¢/2)}, a=n,
(4. 3b)

V2 :p=rcos(6/2), @=y, p =v|sin(6/2)|, a=n.
(4. 3c)

The basis vectors have to be normalized with respect
to the measure

dx, dx, dx, dx,=pdp dg « 2p' dp’ dn. (4.4)
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It is now straightforward to write down the properly
normalized uncoupled basis vector &:

= (2m2) 121 0422 oxp 257 — (2 - 1))

[sinh(£/2)] 2»-[cosh(& /2) P17~
x| (1/V2)lcosh(/2)]?#**| sinh(£/2) | 2i7-1).
(a/V2)[cos(6/2)]%#-!| gin(6/2) |##*

These vectors have the normalization
(q, (ku)(s e') tI) (1+) (se)) — 5,#5(8 — 3)55'55(1’” P)G( b _ﬁ)aa’r
(4.6)

Let us next take up the construction of the coupled
basis vectors. Actually, most of the work involved in
setting up these basis vectors has been done already in
our construction of the O(3,1) harmonics on the unit
timelike and spacelike hyperboloids. Only the radial
functions f;(») and f,(7) for V, and V,, respectively, have
to be determined and these are fixed by the requirement
that' J, (and /) be diagonal with eigenvalue p” (and a’).
We shall first obtain the coupled basis vectors for the
UIR’s of SU(1, 1) belonging to the discrete series which
appear in the reduction of D*® C. These are given by
the O(3, 1) spherical harmonics on the spacelike hyper-
boloid that transform via the UIR’s {2%’ - 1, 0} of O3, 1).
In these UIR’s one finds that @ =~ (1/8)M®=k’(1 - k') and
that the restriction of the generators J, of Eq. (1.17) to
the subspace carrying these UIR’s (followed by a simi-
larity transformation 7J,71) results in the generators
corresponding to the standard UIR D}, of SU(1, 1) given
in Eq. (1. 9) of Paper I. This shows that the O(3,1)
harmonic belonging to the UIR {2k’ - 1, 0} gives us the
coupled basis vector corresponding to D*® C —~ D*,
which is

() (se Y —
q’P

(4.5)

 (k+) (s€) (k’*)

rw"-w—

;k(l?l:)és(gy n, Z/))
2+k(k1 gs(e n) d))

Similarly the basis vectors that span the UIR’s {0, 2s’}
of O(3,1) in // give the coupled basis vectors corre-
sponding to the reduction D*® C— C, since in this case
Q@=1%+5" and the restriction of J, to the subspace of
these UIR’s of O(3,1) (followed by the similarity trans-
formation 7J,7"!) leads to the generators of the standard
form for the UIR Cj,.s2, namely the J,(s’, ') defined in
Eq. (1.17) of Paper I. We can in addition verify that
these vectors transform correctly according to the UIR
(s’, €') in the standard form (see Appendix B).

4.7

\I,W)(se)(s'e') y22 S
en, (6, 9)
. oo (€1, P))- (4. 8)
a’ explig(s’e’ ( 2r-1, 28 100 )
P ( )] 2k(alez)f(e, 77, w)

@(s’e’) is a phase angle required to ensure that
P& 6 €Y transforms under SU(1,1) according to the
standard UIR (s’¢’) set up in I. This phase has been
evaluated in Appendix B and turns out to be ¢(s,0)=7/2,
©(s,3)=-1/2. The two types of vectors (4.7) and (4. 8)
are mutually orthogonal and their normalization prop-
erties are

W (R +) (s161) (Bis) \fy (Be) (s6) (B%)
g »*
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= 6’21)26(81 - s)aeleﬁkik'a( p]’.’ - p”), (4. 9a)
(ry+) € ) (8! €4 (k+) (se) (s%€")
Jr (Ry+) (sy ey ;1:;;1)"1’ k “)p;,’ae’
= leké(sl - S)ﬁeleﬁ(si - s)éeie'b( oy ‘p")éaia' . (4. 9b)

From the completeness relations for the 0(3,1)
spherical harmonics in the timelike and spacelike re-
gions we can immediately write down the structure of
the C—G series for the product D*®C:

©

D'®CE,, 2= D& [ ds'CE,,. 2
R 1/4+s p=1or3 /2 I3 j(‘, 1/4+8'<y

where
e'=0(3) and K, =1(3) if k+¢=integer (half-odd
integer). (4.10)
It is interesting to note that the UIR D; ,, does not ap-
pear in the C—G series because the O(3, 1) spherical
harmonic corresponding to the UIR {j,=0, 0} does not
appear as a discrete summand in the reduction of func-
tions defined on the spacelike hyperboloid. For the same

reason, as we shall see later, the UIR Dj,, will not ap-
pear in the reduction of D°® C,

5. C-G COEFFICIENTS FOR D'®C IN A
CONTINUOUS BASIS

We have two types of C—G coefficients to compute;
namely,

Cle+seR|ppap’a)=06(p" -p-p)Cl(k+seR|ppaa’),
' ' (5.1)

for R=(k’, +) and (s’¢’). The delta function on the right-
hand side always arises out of the trivial r-integration
in the scalar product and we shall drop it in future, re-
cording only the values of C.

From Egs. (4.5) and (4.7) we have

Cletsek'+|p p'a)=iT72 (fo°° délsinh(s/2)
x[cosh(&/2)]?i# Y5500,
+a fo’r d6[sin(6 /2) ]*#[cos(6/2) )¢
X Y2802 (5)).

2p-1,2s

(5.2)

From Eqgs. (3.20) and (3. 24) we see that we have essen-
tially to evaluate the integrals

I = [” dilsinh?(£/2)] “*"[cosh?(£/2) /D k-is

XF(3=k+k ~is,3~k-k —is;1-2is;-sinh?(£/2)),

(5. 3a)
I,= fo" d6[sin?(6,/2) ] s+0"[cos?(6 /2) =1/ 2 =ip
XF(z+k—F ~is, b+ —% —is;1 - 2is;sin2(8/2)).
(5.3b)

These integrals can be evaluated and expressed in terms
of the ,F, function of unit argument!!

_ T(z—~is—ip)T(&' +ip+ip’)

- T(k'+1~is+ip)

B —k+3—is, B +k~%—is, 5 —is—ip
X ’ s 2 .
3F2< 1-2is,k' +3 —is—ip ’1>’

1

(5. 4a)
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1. - Dz —is —ip)T(k - ip)
2T T(k+L—is—ip—ip')
B—k' +%—is, btk =% —is, 3 —is—ip )
1),
><3F2< 1-2is,k+%—is—ip—ip ’

(5. 4b)
Thus we have the following result for C:
Cle+sek'+|pp'a)
T(2is)T (28") Iy
—V"7§N1(1"(k+k'—%+is)I‘(k'—k+%+is) +(s s)
T F(Zis)F(Zk) 12 )
+a ”/2N2<I"(k+k’ '§+is)1"(k’ "k+%+is) +(s—~-sg)).
(5.5)

Turning now to C—G coefficients of the second kind,
we have from Egs. (4.5) and (4. 8)

C(k+ se s’e’[p.p’a a’)
= (ﬁ/z)[ S, atlsinh(&/2) 24 cosh(8/2) |2 Y50, (8)
+ V2 a’ explip(s’e’)] <f0°° d&[sinh(&/2)]-2#
x [cosh(£/2) ]2V ;503 (£) +a [ d8[sin(6/2)]2
X [cos(b’/2)]‘2“’1’;,2‘_31""2)82(9))] . (5.6)

From Egs. (2.17), (3.14a), and (3. 14c) we see that we
have to evaluate the following three integrals:

I, = [ "at[sinh?(£/2)]x /217 cosh®(£ /2) Ji =
XF(k+is +is’, k+is —is’;2k;—sinh?(£/2)); (5.7a)

L= [ atlsinh®(£/2) ] < [cosh?(£/2) ]+t /%12
XF(k+is +is’, k+is —is’;1+ 2is;—s"ah?(£/2));
(5.7b)
I,= [ a8[sin*(6 /2)}i=#"[cos?(6 /2) -t /2-12
xXF(k+is+is’, k+is —is’;1+ 2is;sin?(6/2)).
(5.7¢)

These integrals can again be expressed in terms of
the ,F, function of unit argument!!:

Tk —ip)T'(3 +is’ +ip+ip’)
T(k+%+is’ +ip’)
et b et b
><3F2(k+zs+zs,k is+is’, k zp_l),

7=

2k, b+ +is +ip' (5. 8a)
T(§ +is —ip)T(5 +is’ +ip +ip’)

L= T(1+is+is’ +ip)

o F(k+is+is’,1—k+is+is’,‘lz‘+is—il".1>
372 1+2is,1+is+is’ +ip )

(3 +is ~ip")T(k —ip)
T(k+%+is—ip—ip')

7=

k+istis', ktis—is',z+is~ip’, )

X3F2( 1+2Zs,k+%+23..zp_1p, ’1 . (5.80)
Hence we finally get for the C—G coefficient

é(k+ Se s'e’lp plaa’) :_Ql +a’ eXD[i¢(S’€’)](ﬂ2+aﬂ3), (5. 9)

where
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— (i /2yEm)2Rs T(k+is' +is)T'(k+is’ ~is)
=

T @R (2is) L

b,==V2 (s’ 812)2% D (= 2is")exp(~ s'7) + 1. exp(s'T)]

X <{exp[sﬂ - i(2k = 1)(7/2)] + n.-exp[- s7+i(2k - 1)(7/2)]}
T'(k+is +is’)
T(k~is —is’)

9. =V2(s’ /81222 T'(~ 2is’)exp(s'm) + 7. exp(~ s'7)]
x{expl- s7 +i(2k ~ 1) (n/2)] + 7. exp[sT - i(2k - 1)(n/2)]}
>((1"(k+z’s+is’ ~ )>’

(- 21'3)72 +(s—-= s)) ,

bi .=
T —is—is) 3t (s~ -s

_}J-1 fore'=0
Me=V41 for e’ =%..

This completes the evaluation of the C—G coefficients
for D*®C in a continuous basis.

6. C-G SERIES AND COEFFICIENTS FOR D-®C

To obtain the C—G coefficients for D~ ®C.we can make
use of the outer automorphism 7. We know that (&, n)
=(k, -7 and 7(s,€)=(s,€). Hence if ROR' =T R” then

T(R) @ T(RN=21(R"). (6.1)
Applying this to the C~G series for D*® C we get
D,®Ci= D;® ["ds'Cs 4, g2 (6.2)

k’=lor3/2

Turning to the C—G coefficients we observe that 7 is
diagonal in the UIR’s C{ which implies

C(T(R) TR T(R"Yy | pa p’b p"c)
=abcz:_.:/a,,.c(/{ R R"y'| pap'dp”c), (6.3)

where 7 is a multiplicity index for the representation
R occurring in the reduction of R® R’ and o, a set of
mixing coefficients. Applying this to the case of D*®C,
we obtain

Clk-sek’'=|pp'ap”) =aC(k+ sek'+|ppap”)  (6.4a)
C(k—se¢ s’e”p plap’a’)=aa’C(k+ se s’e’|p p’a p”a’)(6. 4b)

and the same relations hold for the €’s,

7. SUMMARY

Following the approach of previous papers we have
related the Clebsch—Gordan problem of SU(1, 1) for
products of the type D;® ({1, 4.2 to the properties of
0(3, 1) spherical harmonics on the timelike and space-
like hyperboloids in an 0(2) ® O(1, 1) basis. * We thus
understand in a new way the structure of the C—-G
series for this case. Using these spherical harmonics
we have computed the C—G coefficients in a continuous
basis and these are again expressed in terms of the
s F, function of unit argument, There are however
several terms: four in the case of D*®C — D* and five
in the case of D*®C — C. Using the properties of the
representations D* and C under the automorphism 7
we have related the C—G series and coefficients for
D-®C — D" and D"® C — C with the corresponding ones
for the product D*®C.
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APPENDIX A

In this appendix we shall be concerned with the deter-
mination of the two normalization constants N, and N,
which were left undetermined in Eqs. (3.20) and (3. 24).
We will first find the integral representations for the
functions £, (£) and £*'(68) given by the method of in-
tegral geometry and then compare them with Eqs. (3.20)
and (3.24). This offers a means of fixing the constants
N, and N,.

As stated in Sec, 3, the method of integral geometry
gives the following prescription for the construction of
(square-integrable) functions on the unit spacelike
hyperboloid transforming via the UIR {, 0} of O(3,1)
forn=1,2,3,... . Consider a function F(1,b;xn) of two
unit 3-vectors 1 and b subject to the constraint

F(1, R(1, w)b;n) =exp(inw)F (1, b;n), (A1)
where R(l, w) stands for a space-rotation through an
angle w about the direction of 1. Then a function f(x) €4
lying in the subspace of the UIR’s {n, 0} can be written

in fully reduced form in terms of F(l,b;n). Thus

Flx)=(2/) 21 n [ d1)8(x, -x - )F(l, x - x,L;n), (A2)
with the norm of f(x) given by
[ @lF@ P =@/m 50 [ a2 | Qb2 (a3)

(dx) is the O(3, 1) invariant measure on the spacelike
hyperboloid and d2(1) the solid angle element associated
with the vector 1. We shall find it convenient to intro-
duce Euler angles «, 8,7 to describe 1 and b:

1=(sinBcosv, sinBsiny, cosf),
b = (cosa cosB cosy - sina siny, cosa cospf siny

+ sina cosB, — cosasinf). (A4)

Then the o -dependence of F(l,b;n) factorizes due to the
constraint in Eq. (A1) if we realize
exp(ia) = phase between 0 and 27 of — b, +i(1XDb),.
(A5)
Then,

F(l,b;n)=F(a, B, v;n) =exp(ina)F(0, 8, ¥;x). (A6)

In order to construct an eigenfunction of M2, M,,, and
M,, with eigenvalues 2(nZ - 1), m, and a, respectively,
we choose

Fnoma(a ,B,v;n)= B ng expline — imy)|cotB/2)# /sinfB].
(A7)

Then from Eq. (A3) the norm of the corresponding
fagma(%) DeCOMeES
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f (dx)fnbm'a'(x)*fnom(x) = 16”06,,6"06",',,, 8(a’ - a). (A8)

Parametrizing the unit spacelike hyperboloid (x*=1)
according to Eq. (3.1), we have

Q) "
Fam ({5 ) etin-m 5 3.
(A9)

Substituting Eq. (A7) in Eq. (A2) and changing the
variable from 8 to A by cotB8/2 =exp(r), we find after a
few simple manipulations

£ (8)= (2n /1) [, exp(imy) dy [ exp(-iak) d
x & (sinh(£/2) coshX — cosh{£/2) cosy)
X (sinh(£/2) sinhX + i cosh(£/2) siny)™, (A10a)

froa(8) = (2n0/7°) [ explimy) dv [~ exp(—ia\) d

%8 (sin(8/2) sinhX - cos(8/2) cosy)
X (sin(6/2) coshX + i cos(8 /2) siny)'o.  (A10b)

These functions have the following normalization for
fixed m and a but different n:

(2 dt st |25 020) + [1ds | sins £ 20, 206)
=16n5,, . (A11)

Let us first concentrate on f,'2)(£) and put the integral
representation for this function, Eq. (A10a), in a more
convenient form. The 6 function can be used to carry
out the A integration. Since coshX is an even function of
A, we have

8(coshX sini(&/2) — cosy cosh(£/2))
=[8(x ~Ag) + 8(x +A,)]/sinhr, sinh(£/2), (A12)

where cosh),=coth(£/2) cosy. Moreover, since cosh},
> 1, we must have cosy = tanh(£/2). Therefore, we have

Frndl&)=(2n/7%) [° exp(imy) dy|sinhx, sinh(£/2)]
x{exp(- ia),)sinh(£/2) sinhr, +i cosh(£/2) siny "
+ exp(iar,)[ - sinh(£ /2) sinhx, + i cosh(£/2) siny]"},
(A13)

Changing variables to u defined by sinp =cosh(£/2)
x siny (which makes the integration go from —7/2 to
7/2), we get after some calculation

faar ()
= (2n/7®)cosh(£/2)I"{[sinh(£/2) )2 (n, m, a;~ sinh?(£/2))
+(=1ylsinh(£/2)] %@ (~n, m, — a;—sinh*(£/2))},
(A14a)

o (n,m, a;z)Ef'r/2 exp(in) du (VeosZi —z +isinp)™

-r /2 (cos? — z)1/ 2

x{(VcosZu —z +cosp) e, (A14b)
If we now equate this expression for f,%’(£) with that ob-
tained in Eq. (3.20) which is

(8 =N, [cosh(£/2)]"T(n + 1)

« [ I'(ia)lsinh(£/2)]-t
T +m+n+ia)2]0((1 -m +n +ia) 2]
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><F<1+m-;n—-1,a ,lfmz—n—za ,l—ia;—sinhz—é-)

+(a—»—a)], (A15)
we have an equation which can fix the value of N;. To
achieve this we multiply both sides by (sinh(/2))%,
replace a by a —ie, €>0, and take the limit £— 0+,
Then the second term on the left-hand side [i.e., of Eq.
(A15)] vanishes since

[sinh(£/2)P4(e-1) = [ sinh(£/2)**e[sinh(£ /2) Pe ~O.

On the right-hand side [i.e., Eq. (A14)] the second ¢
becomes finite so that we get

T(n + 1) (ia)
T[(1+m+n+ia)/2]T[(1 —m +n +ia)/2)

N

nzn 7€ gﬁ i
:(—1) ?90(—",?’”»-0"'16,0)‘* 72 %Pg:

x{[sinh(£/2) %@ (n, m, a ~ ie; - sinh?(£/2))}.  (A16)
Now,

@(=n,m, —a+ie0) =2 f_:;: d p expli(m —n)u)(cos p)eret

=27T(i a)/I‘ (1—1"—2"&)
xr(lomintia) (a17)

using standard results.!?

The second term in Eq. (A16) can be shown to vanish
in the limit. Thus we end up with the following value for
N .

T{(1+m+n+ia)/2]
Tin+1)I{(1+m-n+ia)/2]*

Turning now to the case of fn‘,ﬁ;(e), we can again make

use of the & function in Eq. (A10b) to do the X
integration:
6(sin(6 /2) sinhX ~ cos(8/2) cosy)

=8(x —2,) /coshi, sin(6 /2),

N, = 47” (= 1) (A18)

where sinhA,=cot(6/2) cosy.
(A19)
From here on the calculation proceeds along similar
lines as before and we finally end up with the result
L1 +m+n+ia)/2)
(1 +m)T[(1 +m - n+ia)/2]

N,= 4—;5 (=1 (A20)

APPENDIX B

This appendix deals with the phase angle ¢(s, €) intro-
duced in Eq. (4.8). The need for such a phase was en-
countered once before in II when we considered the re-
duction of the product D*® D" and the situation here is
analogous. We have the representation )*® (" of SU(1,1)
and a representation of O(3,1) acting on the Hilbert
space //, the two representations commuting with each
other, but sharing the same Casimir operator, Hence
by reducing the O(3, 1) representation into UIR’s we
were able to simultaneously achieve the reduction of
D*® ( into UIR’s of SU(1,1) and by suitably choosing a
basis in// we were able to isolate the product D*®C
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from /)*® ¢ and thus obtained its reduction into UIR’s.
Now in reducing the O(3, 1) representation on // we were
led to set up complete sets of spherical harmonics for
the timelike and spacelike regions V; and V, of Minkow-
ski space. The O(3,1) spherical harmonics belonging to
the UIR {0, p} served as basis functions for the continu-
ous series of UIR’s of SU(1,1) in the reduction of /})*® C
Using the method of integral geometry we ensured the
complete identity of 0(3,1) transformation properties of
these spherical harmonics in V, and V,.

Consider now a general vector fe /4 belonging to the
UIR (s’,€’) of SU(1, 1):

N Y
= R=1/2 orl f-“‘ dsCyfs) exp[i<P (S’f')]fz(’i’)(‘l/zf(':.;.zfz(g’ 7, zp)) ’
261, 25 (6,m,¥)

(B1)
where the C,(s) are arbitrary constants.

The 0O(3, 1) transformations can in no way distinguish
between the components of f belonging to V] and V, since
7 is invariant under O(3, 1) and y' and g* have been
chosen to transform identically. On the other hand,
SU(1,1) transformations, which commute with the 0(3, 1)
ones, cannot alter the O(3, 1) structure of f. Hence if
h=exp(itd,)f, where J, is one of the generators of
[0*®(C, both f and h will have the same O(3, 1) spherical
harmonics [or the same set of constants Ck(s)} the only
difference being in the radial functions. The ensure that
the radial functions transform under SU(1, 1) according
to the standard UIR (s’,¢’) set up in I, we must suitably
choose the phase angle ¢(s’¢’) which is the only freedom
allowed by the O(3, 1) representation,

To determine ¢(s’¢’) we must first discover the rela-
tion between the radial functions in % and in f. We can
then adjust ¢ (s’¢’) so that this relation is given by the
kernel for the finite transformation exp(itJ,) in the
standard representation (s’,¢’) of 1.

From Eq. (1.17) we have

Jy=1(x*-0%). (B2)
Hence,*
lexp(itdo)f Mx) = h(x; )= [ d*x [(x,x"; )f(x"), (B3a)
[(x, x"; ) =[27sin(t/2) ]2 exp{- il (x + x?) cos(t/2)
—2x-x'] /2 sin(t/2)}. (B3b)

Let us choose f(x) to be nonvanishing on ¥, (and by
reflection R on V,) and zero on V,. We can get an equa-
tion for ¢ (s’e’) by evaluating h(x;t) on V,, say V,*’. Then
we must parametrize x’ according to Eq. (2.6) and x
according to Eq. (3.1a):

x2=1.2, x'ZI’V'Z,
x+ %’ =7r'[cosh(£/2) sinh(£’ /2) cos(yp - ¢')
- sinh(£/2) cosh(£’ /2) cosh(n - 17)],

dix' =% v3dy’ sinh &’ dg’ dn’ dy’.
Hence we have

h(x; t)=h(r, & n, ;1)
=% ["r*dr ["sinhg ay [Taw [Ty

expl— (i 2)(#2 - »'2) cot(¢/2)] iry’
X [27sin(/2) [exP<sin(t /2)

(B4)
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%[cosh(&/2) sinh(£/2) cos(y = ¥’) — sinh(£/2)

X cosh(&’/2) cosh(n — n')])f(Vl) + exp( Ei_nz(—%“)

x[cosh(£/2) sinh (£/2)cos(y — ¥) - sinh(£/2)
X cosh(¢’ /2) cosh(n - 1)] ) AV;)
=3 [T ar [Tsinhgrag [ Can [ ay
x[27 sin(2/2)12 expl - (i /2)(#? - 7") cot(t/2)]
x{exp(ia[cosh(£/2) sinh(£’/2) cos(¥ - ¥')
- sinh(&/2) cosh(&’/2) cosh(n —n")]) + e
xexp(— ia[cosh(£/2) sinh(£’/2) cos (¥ - ¥)
— sinh(£/2) cosh(£'/2) cosh(n - n")DH(Vy),
(B5)

where we have set|R =7, and @ =7’ /sin(¢/2). For
f(V;) we must put in an expression corresponding to Eq.
(B1):

AR =, 81,1, 90 =D [ dsCS () Yedl ', ).

The requirement that z(x; £) have the same O(3, 1) struc-
ture as f and that the radial functions of x(x;¢) must
transform correctly under the UIR (s’,¢’) of SU(1,1)
imply that

explig (se")Ing (7, £, 7, 9; 1)

=2 [asCys) explio(s'e)hy(r; Y3158, 1, 9)  (B6a)
and

ho(r; )= [," 72 dr LY, v O (),
where
L (r, v 1)

=[7sin(¢/2) ] (r»")" expl - (i /2)(r? - #*) cot(t /2)]

(B6b)

x[exp(~-7s) =0, exp(ns")]K,, (a).

(We have taken account here of the change in measure
from rdy to »3dy as compared to the standard UIR’s
defined in I.) Equating the expressions for k(x;t) in Egs.
(B5) and (B6a), we clearly have an equation for ¢ (s’e’).
Since f;(7’) is arbitrary, we see that the equation must
be independent of f,(»’). Further, £is a free parameter
in the equation and we can therefore set £=0 to simplify
the equation. Finally, recalling that

i (8,1, ") =expl2isn’ ~i(2k - 1)y ]Y ;154 (£)
(B7a)
and
S50 (E, m, y) =expl2isn - i(2k - 1)y JY50N8),
(BTDb)

we finally end up with the following equation for ¢(s’¢’):

explig(s'e)]20 [ dsCy(s)lexp(-7s) - n,.exp(ns) K, . (@)
XY35 (=0 =~ (a /16");12 [ dsCy(s) [" dcoshg’
X [“an [ ay expl-2isn +i(2k - 1)y’]
X ¥ 5,55, (£) {explia sinh(&’ /2) cosy’T}
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+1,.expl| - ia sinh(£’ /2) cosy' |}

=—(a /1611)? C,(0) [, “dcoshg’ [y
xexpli(2k - 1)9' 1Y ;50 (£)
x{explia sinh(£’ /2) cosy’] +1,.

x expl - io sinh(£’/2) cosy’ I} (B8)

Now
Y5 390(E=0)= VAT (s’ /47%)6(s) 22T (- 2is")
X [exp(s7) +n,.exp(— s'm) | {expli(2k - 1)(7/2))

T(k+is’)
r'(k-is’) "

Thus we see that only the C,(0) part of the equation
survives on both sides. However, since Ck(O) are also
arbitrary numbers the equation must be independent of
them. We are finally left with the following equation:

expli (s'e’) VAT (s’ /4m?)224" T (= 2is")n, [exp(s'm) -7,

weoxp(c s exp(se) 41 (-5 iy () L)

=(a/16)27 f1 " dcosh 'Y ;50 (&), ,[a sinh(£/2)].
(B10)

The integral on the right-hand side can be evaluated
using standard formulas'® and we end up with the result

o(s’0)=7/2, @(s'3)=-7/2. (B11)

+ 0, expl-i(2k - 1)(7/2)]} (B9)
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This is the last of four papers describing a new approach to the Clebsch-Gordan problem for the
group SU(1, 1). Here we have related the Clebsch-Gordan series for products of the type C ® Cto
properties of the group O(2, 2) and the structure of the series is thus seen to arise out of the
properties of G(2, 2) spherical harmonics in an G(1, 1) ® O (1, 1) basis. The Clebsch~-Gordan

coefficients in a continuous basis are also evaluated.

INTRODUCTION

This is the fourth and final paper in a sequence devoted
to a new treatment of the Clebsch—Gordan problem for
the unitary irreducible representations (UIR’s) of the
group SU(1, 1).* The entire work has been presented in
four parts because of the characteristic differences be-
tween the four essentially distinet kinds of direct pro-
ducts of UIR's one can form; but the unifying element is
the fact that in each case a particular four-dimensional
real orthogonal or pseudo-orthogonal group acts as a
symmetry group of the problem and essentially deter-
mines the structure of the C—G series. In addition, of
course, we determine a normalized set of Clebsch—
Gordan coefficients in an O(1, 1) basis in each case.

In the three previous papers, we related the direct
products D*® D*, D'® D™ and D*@ C to certain repre-
sentations of 0(4), 0(2,2), and 0(3,1), respectively.
These representations were required in an 0(2)® 0{2),
0(2)® 0(2), and an 0(2)® O(1, 1) basis, respectively. In
the present paper, we solve the C—G problem for pro-
ducts of the form C® C using some properties of certain
representations of 0(2, 2) in an O(1, 1)® 0(1, 1) basis;
this is the symmetry group for such products. The
reader will notice that the treatments of the four kinds
of products of UIR’s of SU(1, 1) are very similar to one
another upto the point where one recognizes the appro-
priate four-dimensional rotational symmetry, but
naturally diverge thereafter.

In Sec. 1, we construct the unitary representation
e of SU(1,1), and display the group of transforma-
tions, G, under which it is invariant. The representa-
tion @ acts as the source of all products of the form
Ce Cf;. The group G consists of its identity component
which is just the group 0O(2, 2) and one more component
generated by a discrete symmetry transformation of
(®(C . The structure of G, its action on four-dimen-
sional real space, and the choice of angular variables
in this space appropriate to the present problem, are
all explained in Sec. 2. Combining these results with
the expression of the Plancherel theorem for SU(1, 1) in
an O(1, 1) basis, we carry out in Sec. 3 the construction
of a complete set of “spherical harmonies” for the
group G, in four-dimensional space. All these steps
are quite similar to those taken in the three previous
papers of this series, only the details differ. With the
help of these spherical harmonics, we set up in Sec. 4
the two types of basis vectors in the space of the repre-
sentation ( ® ¢ of SU(1, 1) from whose structure the
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C—G series for the product C;® C; is easily read off.
Finally, Sec. 5 gives the expressions for the C~G co-
efficients in the O(1, 1) basis and Sec. 6 contains a
summary and remarks on this work.

1. SYMMETRIES OF THE REPRESENTATION
C & C OFSU(1,1)

Let us take the direct product of the unitary repre-
sentation ( of SU(1, 1), constructed in Sec. 2 of I, with

itself. We shall write 4/{(, 13) and £/((, 24) for the two
Hilbert spaces in which the individual representations

( are defined, so that (®( acts in the space 4/

=4, 13) 4, 24). The numerals 1 and 3 label the
variables used in constructing the generators of the first
factor, 2 and 4 those of the second factor, in the pro-
duct (' ®(, in the manner of Sec. 2 of I. [The numbering
is done in this particular way because then the de-
scription of the group 0(2, 2) in terms of 0(2, 1) can be
taken over with no changes at all from II. ] Elements of
# will be functions f(x,, %,, x,, x,) with the squared norm
given by

IIfHZ:f‘: f_: f: [: dx, dx,dx,dx, | f(x) |2 < oo, (1.1)

The four independent sets of oscillator operators de-
fined on // obey

la;, a]=5,, la,a,)=[a3 a;]=0,

i, B=1,2,3,4. (1.2)
The generators for C @ are the sums of the individual
sets of generators, and in terms of the above oscillator
operators they are

I, =d(C,13)+J(C , 24):
Jo=3aja, - aja, + aza, - @ya,), {1.3)
J,=Haje; - aay + a,a, ~ a,0,+ aya; - @ya) + a,a, - a,a,),

Jy=—(i/4) (aja; + atal - a,a, — a0, + aja; + ajo; — a,a, — a,a,).

To disclose the symmetries of these generators, we
switch over to new operators b, b, defined as

by=a,, by=a, by=-~aj, b,=-aj. {1.4)

Using the diagonal metric tensor g, ,, with g,, =g,
=~ Zaa =~ 4=+ 1 for raising and lowering of Greek
indices, Eq. (1.2) becomes

Copyright © 1974 American institute of Physics 1656
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(1.5)
i 0
- au), au = Fyor

At the same time, the J, take on a simple appearance:
Jo=3(g""b},b, +2),
Jy=1 g(b,b,+b,b,),
Jy==(i/4)g""(b,b; - b,b,).

It is clear that the basic commutation relations (1. 5) and
the total SU(1, 1) generators J, are unchanged when we
perform a real linear transformation

(1.6)

x,~0,", b,—~0,b, b,—0,"; (1.7
that leaves the indefinite quadratic form x®=x* x . in-
variant. There is then a unitary representation of the
group of matrices /|0, ”|l acting on // and commuting with
the representation (" ®( of SU(1,1). As in Il we shall
write O(2, 2) for the identity component of the group of
matrices ||0, *ll; its representation on // is generated by
the six operators M,

M,,=i(bib,—bib,)=i(x,0,-x,3,). (1.8)

Among the improper transformations we shall make
particular use of the following two:

Pyt Xy = =%y, Xy Ay Xy — Xy, Xyt X, (1.9)

Py x, = xy, Xy =Xy, Xg~™Xg, X4 =X,

Actually, these two transformations lie in the same
component of the full group because of the relation

P,, = exp(inM,,) exp(itM,,) P,,. (1.10)

We shall write G for the group made up of the identity
component, 0(2,2), and the component containing P,,
(and P,,). The relations between O(2, 2) and P, will be
worked out in the next section. We may note here that
the product P,,P,,, corresponding to the transformation
%, —~ —x, belongs to 0(2, 2) and commutes with all ele-
ments of G.

The symmetry properties of the operators J, under
G are expressed by

(Jo, M, 1=0, P,J, P.=J,. (1.11)

For the individual sets of generators we have the lesser
symmetries

[T, 13) or J (C,24), M., or M,, or P, or P,,]=0.
(1.12)

We may remind the reader that in reducing the repre-
sentation (" on 4/((, 13), for instance, into UIR’s, one
has to simultaneously diagonalize M,, and P,,.

It is important to know, in the present kind of direct
product, how the outer automorphism 7:J,~ - J,,
Jy—~—4dJ,, J, ~dJ, is implemented. For the first factor in
the product ( ® (, defined on //((",13), it is implemented
by the unitary operator 4,,:

(A 130y, X5, Xa, %,) =F (X5, %5, %y, X,). (1.13)

Similarly, for the second factor, it is implemented by

Azal
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(Azaf ) (1, Xg, Xg, %) =F (21, Xy, %5, %5)- (1.14)
[Recall that 4,, commutes with both M,; and P,;; on the
other hand, a subspace of //((, 13) which is an eigen-
space of both M,; and P,, carries just one UIR Cf, occur-
ring in the reducible representation (" with P, deter-
mining €, M,, determining q. Therefore, 4,; acts within
each UIR obtained in this way, not connecting it to an-
other appearance of the same UIR on another subspace
of /(¢ , 13). The same holds for 4,,. ] For the total gen-
erators J,, the automorphism 7 is implemented by

A= AzAzat
(A )y Xy Xg, %) = F (%5, X4y %1, X,),
AdoA ==dos AdA==dy, AJeA=d,-
And if we pick a particular product Ct® C§ from out of
( ®( on account of the above-mentioned properties of

A1 and 4,,, we see that 4 carries this product into
itself. This operator 4 will be used in the sequel.

(1.15)

The connections between the various Casimir opera-
tors, established in previous cases, hold good again.
For the invariants associated with the two factors in the
product ('@ (, we have

Q=1+ M%), Quu=i(1+M3).

For the total SU(1, 1) Casimir operator @, we have
Q=(J,)* + (J5)* — (Jo P = — 3M?,
M2=M""Mw,

(1.16)

(1.17)

where M? is one of the two 0(2, 2) invariants. The other
one, €,,,M“YM*? vanishes on account of the special
formof M.

We shall next specify the natures of the uncoupled and
coupled bases for //, with whose help the C—G series
and coefficients will be determined. In the uncoupled
basis, the simultaneously diagonal operators will be
M;, Pig, J2<C’ 13), A 15 and Mz‘pl P24’ Jz(C’ 24), Aza
thus a particular product C; ® C; will be singled out, the
eigenvalues of M, and P,, determining ¢ and ¢, those of
M,, and P,, determining ¢’ and ¢. In the coupled basis,
M, P,;, M,,, and P,, will again be diagonal, and to
these will be added @ and J,. In addition, when @ > i,
the operator 4 and one other operator will be diagonal;
this latter one is necessary because of the double ap-
pearance of each continuous class UIR C;'.' in a product
CiaCy.

In the following sections, we shall describe the con-
struction of a complete set of 0(2, 2) “spherical har-
monics” in a basis in which M,,, M,,, and M? are diag-
onal, and then by including the action of P, (and P,,)
extend them to bases for certain UIR’s of the larger
group G. We conclude this section by recording the
equations that isolate the “angular dependences” of the
dJ, in the operator @; the method is exactly the same as
in the previous cases. We have

1 1
R TR )

1 2 4
JIZ—%(XZ-F F(X'a)Z'F ;Z-x'a'FFQ),
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Jy==(i/2)(x+2+2), x-8=x*3,. (1.18)
2. STRUCTURE OF G AND CHOICE OF
ANGULAR VARIABLES

Let us divide the four-dimensional space into two re-
gions, V, and V_accordingly as the indefinite form x?
is either positive or negative. The surface x>=0 can be
ignored. A function f(x)c /4 can be written as a column
vector with two entries, f _(x) and f (x), giving its
values in V_and V,, respectively:?

ren ={5)

lIfIIZ:fV_ dix|f.(x)]2+ fm d*x|f. (%) ]2

We shall write //, for the two subspace corresponding to
f- =0 respectively; so /=4 ,® /{.. We shall make use
of the mapping P defined by

(2.1)

(2.2)

P(xp Xgy X3y x4) = (x3» X9 X35 xz),

We shall write 4/, for the two subspaces corresponding to
given in Eq. (1.15) and implements the automorphism
T on the total generators J, can be rewritten using P:

(AS) (¥)=f(Px). (2.3)

Note that P is not contained in the symmetry group G,
and is not related to P, and P,,.

We need a convenient description of G and its action
on x, in a form that will suggest a natural choice of the
angular variables and spherical harmonics. Let us be-
gin with the structure of 0(2, 2). We recall from Sec. 2
of II, we shall make each direction within V, correspond
which can be uniquely parametrized using four real
variables (a,, a,, a,, a,), as

gla)=a, - ia,0, - a,0, — a,0,,
a+a-d-di=1, (2:4)

there are two special transformations L(g) and R(g) of
0(2, 2):

1~ 8 43 a4 a a4, =a3;-—a,
% 4 0 —a, _f~% & a —a
Lig)= a, a, a, —a,) Re) -a;, a, a, —a,
d, — 03 G &4 ~ay =03 G
(2.5)
These transformations obey
L(g")L(g)=L(g’'g), R(g')R(g)=R(g’g),
L(g")R(g)=R(g)L(g’), (2.6)

and the general element in the identity component of
0(2, 2) can be written as L(g)R(g’), g and g’ being in-
dependent SU(1, 1) elements. In this way, the

SU(1, 1)@ SU(1, 1) structure of 0(2, 2) (locally) is made
manifest. The structure of G is specified by stating the
following relations, which are easy to verify, in addition
to (2.6):

P13L(g)P13:P24L(g)Pz4:L(T(g))’
PlgR(g)Pm:P24R(g)Pz4=R(T(g));

PPy =Py Pyy==1 P =P, =1 2.7
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For convenience, the properties of P,, have been written
down, though they follow from those of P, and Eq.

(1. 10). The change g~ 7(g) corresponds to a change in
sign of the parameters a, and a, in Eq. (2.4).

In order to describe the action of G on %, asin Sec. 2
of II, we shall make each direction within V, correspond
to one element of SU(1, 1) in a reversible way, and simi-
larly for V_. So we define

xeV,:82=7% r>0,
a(x) = rY(x, — i%,0, — %,0, — %,0,),
xeV_:x2==92, r>0,
a(x)=r"Yx, — ix,0, — x,0, — x,0,),
a{ Px) = a(x). (2.8)

Then the transformations of G applied to x, can be de-
scribed in this way:

a(L{g)x) =g a(x),  all x,

ARV =aNg™ i xcV,, N eV, =9
a( P, %)=~ 1-7(a(x)), allx,
a(P,x) = 1(a(x)), all x. (2.9b)

The replacement of x, by {7, a(x)} is to be viewed as
the passage from Cartesian to radial and (generalized)
angular variables; within each of the regions V, and V_,
the SU(1, 1) element is the “angle”. Once a definite
parameterization for SU(1, 1) is adopted, those param-
eters become ordinary “angular” variables. Each of the
functions f,(x) in Eq. (2.1) can be written as a function
f.(7;a(x)) and the squared norm of f is

IfIE=2n? [“var [ = de(|f(rg)|*+

su(1,1)

f.(7r:8)|?).
(2. 10)

Here, dg is the invariant volume element on SU(1, 1),
written down in Eq. (2. 20) of II.

The parametrization that we seek for SU(1, 1) must be
such as to make M,;, M,, particularly simple. Since
&1 =~ &3 and g,, = - g,, each of these operators gen-
erates hyperbolic, and not Euclidean, rotations. The
appropriate parametrization for SU(1, 1), in these cir-
cumstances, is the O(1, 1)-parametrization, * and not the
Bargmann parametrization which was used in II in de-
composing the representation /)*® /)~. This parametriza-
tion of SU(1, 1) can be explained briefly as follows.? For
the moment, denote the generators of the defining two-
dimensional representation of SU(1, 1) by J,,, J,, J, ac-
cording to

Jo=%°3, I, =(i/2)0,, J,=-(i/2)0,. (2.11)

Then, barring a set of measure zero, every element
g(a) in SU(1, 1) can be written uniquely in the form
gla) = exp(itd,) X(a)exp(it' J,), (2.12)
where X(a) is a suitable and simple element of the group.
Depending on the signs of the expressions & - a,?,
&~ a etc., [cf., Eq. (2.4)], the group space can be
divided into five disjoint regions and in each of them a
particular form of X(a) is to be used. The definitions of
these regions, and the decomposition in the above
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fashion to be used in each of them, are as follows:

(i) Region R: d}>dZ, da}>aj,
gla) = exp(itJ;) exp(ipd,) exp(it' Jy),

-2 < <2m;

—w<g g <,

(ii) Region S;: @®>d?, d2<d, a; 21,
gla)=exp(igd,) exp(ivd,) exp(ig’'J,),

(iii) Region S;: @®< a3,

- o<g, g,’ v< o3

ag > ai’ a2 s - 1)

gla) = exp(igd,) exp(iw,) exp(ind,) exp(it’J,),
- °°<§a g’! r< %95

(iv) Region S,: &> di, &<d;, a,<-1,

gla) =exp(itd,) exp(ivd,) exp(2niJ ) exp(il' J,),
_w<§,§’,y<oo;

(v) Region S;: a2<di, a>di, a,>1,

gla) =exp(itd,) exp(ivd,) exp(3mid,) exp(ig’' J,),

w< L, v< o, (2.13)

Using Eq. (2.11), one can express the a’s in each region
in terms of the new parameters, but we will not do that

here since the related expressions for the x, will be
given.

Now, on the basis of the above parametrization for
SU(1,1), we divide the region V,_ into five disjoint sub-
regions, based on the nature of a(x). Thus, the points
x eV, for which a(x) e R < SU(1, 1) will comprise the re-
gion V, ,cV,, those for which a(x)= S, SU(1,1) give
the region V, ¢ CV, and so on. So then the passage from
the Cartesian variables x, to new radial and “angular”
ones, in V,_, is obtained by combining the first line of

Eq. (2.8) with Eq. (2.13) and gives the following results:

+

x,=7cos(u/2) cosh(g,/2), x,=-7sin(u/2)cosh(¢_/2),

. 2 .2 .2
Vir: x3>x3, x3> x5,

1
x,=—vcos(i/2) sinh(g,/2), x,=7sin(u/2)sinh(g_/2);
Vst $i>%5, %<xi, %27,

x, =7 cosh(v/2) cosh(g,/2), x,=—rsinh(v/2)sinh(¢_/2),
%y =— 7 cosh( u/2)\sinh(§+/2), x,= v sinh(v/2) cosh(¢_/2);
Vst X3<x3, B>, x,<—7

2 3

x, =7 sinh(v/2) sinh(t,/2), x,=- vcosh(v/2)cosh(¢_/2),
x,=— 7sinh(v/2) cosh(¢,/2), x,=7cosh(v/2)sinh(¢_/2);
Vis,t
x, = — v cosh(v/2) cosh(g,/2), x,=7rsinh(v/2) sinh(g_/2),
x,=7cosh(v/2) sinh(¢, /2), x,=- 7 sinh(v/2) cosh(¢_/2);
Vs B<, B>, xev
x,=— v sinh(v/2) sinh({,/2), x,=7cosh(v/2)cosh(¢_/2),
x, =7 sinh(»/2) cosh({,/2), x,=-7cosh(v/2)sinh(z_/2);
L= tt. (2.14)

2 2 2 2
x1>x3, x2<x4, X, -7,

To introduce new variables in V_, we just make use of
the mapping P in Eq. (2.2). This only involves inter-
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changing x, and x,, x, and x, in the above. The mapping
P applied to V, , V+,so’ . V+,s3 generates V_ .,

sy o Vs respectively.

Let us now spell out the way in which elements of //

are to be described. Going back to Eq. (2.1), we re-
place f,(x) by a collection of five functions in this way:

xeV, g FX)=frcunt),
fx)=f, (r;evg’), n=0,1,2,3.

In an exactly similar fashion, f_(x) is replaced by
fAr;eut’) and f_ (r;eve’). So a general element fc 4
consists now of a column vector with ten entries:

(2. 15)
xcV, s,

fAr;ent’)
fo o7 eve’)

f{r;a(x))

= - f—.3(7§§V§')
FAralx))

flreu’) ’
foolrsve)

_w<§; CI,V<°°
—-27 < <27,

f

f.{reve) (2.16)

And after evaluating the SU(1, 1)-volume element in the
new parameters, Eq. (2.10) becomes

nfuz:fo"’ 2n*rar(32n®)t [~ ay [ dt

[0 |sing |du(|r.(rsene) |2 +

fnene)?)

+§ f_: |sinhu|du(]f_,"('r;§v§’)|2+ |f§m('r;§v§’)|2)]. (2.17)

This way of describing elements of // appears rather
cumbersome, and can be simplified under certain con-
ditions. In practice we will always need to deal with
eigenfunctions of the two operators P,,, P,, in Eq. (1.9).
Thus, to deal with the direct product C;® C:.' within

( ®(C and its reduction, we need to work only with eigen-
functions of P, and P,, with eigenvalues 7, 7., re-
spectively, and the specification of such an element is
simpler than Eq. (2.16). (Here, n,=+1andn,,,=-1.)
Starting with a general element f as in Eq. (2.16), and
imposing the two conditions

Plsf:nef) Pz4f=715'f, (2 18)
We get the following consequences on f,:
Freut ) =n fr8, 21— u, &) =n.. f(r;&, - 1, &),
ff,o(/r;gl}g’):nefﬁz(r;gy -V, §’):ne' f+,o(7;§’ -V, CI)’
Foameve)=n f, nL, - v, ¢') (2.19)

=Ne fo,3(138, = v, &)

Exactly similar equations hold with f_ in place of f,. So
such an f is completely determined by knowing the func-
tions f,(v;eut’) for —w <pu <0, f, (7r;¢tve’) for v=0, and
Jia{r;Eve’) for v=0. (This choice of independent “parts”
of f is made since it corresponds to covering the regions
X%3>1%,1, %,> lx;| in the x, — x, variables, and x,> |x,1,
%, > |x,| in the x, ~ x, variables). With the understanding
then that we are speaking of an eigenfunction of P, and
P,,, we can replace Eq. (2. 16) by something simpler,
namely
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fArigut)
I, o75Eve’)

f: f_'a(’)’;gl/é") ;
fAreug)
Sook73Eve)

S o7, Eve) (2. 20)

And if f* is another eigenfunction of P,;, P,, with the
same eigenvalues as f, then the scalar product of f* with
f reads

¢ )= [ 20 an(8r®) [ dr f_:dg(/_‘:(- sinp) du

XU SRV 7380l ) + FLrseut  frEut’))

—rT<su<0, O0sv<owo,

+ [n sinhvdv 22 (f! (760’ V*f. (7;EvE’) (2.21)
n=0,3

+f1 (rsve)* f,,n(r;gug'))> .

In constructing the uncoupled and coupled basis vectors
later on, we shall always display them in the form
(2. 20).

Finally, in concluding this section, let us give the
forms for M,,, M,,, and comment on the others. Of
course, the representation of O(2,2) we are dealing with
at present is just the same as the one encountered in II
but only expressed in a different basis; so we can take
over from II the steps by which the M, are replaced by
suitable linear combinations which make up two mutually
commuting SU(1, 1) Lie algebras, and also the result
that these two independent algebras share the same
Casimir operator which in turn coincides with @. The
combinations M,, + M,, belong to these two commuting
SU(1,1) Lie algebras. Each of the M, in each of the
regions V_ ., V. Sy V, r V.s, is a partial differential

operator in the ang'ular varlabi'es appropriate to that
region (¢, U, & or &, v, ¢’ as the case may be). M,, and
M,, have, in all regions, the forms

(2,2 a2
M13=l(5?+5_§_>’ M24—l(a§’ a§>

For the rest, the use of the mapping P shows that M,,,

M,,, M, and M, in any subregion of V_have the same

expressmn as M,,, M,,, M,;, and M, respectively, in
the corresponding subregion of V,. But we do not need

these explicit expressions in our work.

(2.22)

3. CONSTRUCTION OF SPHERICAL HARMONICS FOR
THE GROUP G

With the preparation of the previous section, we are
now in a position to construct complete sets of functions
of the “angular” variables, both for V, and for V_, which
will form bases for certain irreducible representations
of G. The interesting point will be to ascertain what rep-
resentations of G appear in //,, and which ones in//_. In
general, a UIR of G may be composed of several UIR’s
of the subgroup 0(2, 2), though sometimes it may re-
main irreducible under this subgroup. We will first con-
struct complete sets of functions forming bases for
UIR’s of 0(2, 2), and then see how to form bases for
UIR’s of G.

The construction of a complete set of O(2, 2) harmon-
ics, in V, or in V_ involves just the Plancherel theorem
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for SU(1, 1), exactly as in II. The only difference is that
now the theorem needs to be stated in the O(1, 1) basis.
Using the notation introduced in Ref. 4(b), the “matrix”
representing the element g of SU(1, 1) in the UIR R and in
a basis with J, diagonal is written as
,('/i,),,, (2). (3.1)
Here, p and p are the eigenvalues of J, in the two states
between which the matrix element is being evaluated,
and the subscripts b and a, which are present only if
R =Cf1, are the eigenvalues of the operator implementing
7. For g in each of the five regions R, S, of SU(1, 1), we
have a special form for /)(g). Namely, using the
parametrization of Eq. (2.13), we have

gcR: 0,‘5 ).pa(g) expli(¢p +&'p)IC (R)(P’ bik);

ge S, n=0,1,2,3: 0%?,,,(g)= expli(¢p + ¢'p)]
)
x}(b/f @', p;vsn).
The explicit expressions for the (’s and 7’s may be
found in Ref. 4. An important property of these rep-
resentation matrices is that under the automorphism

(3.2)

g~ 1)
2R, r@n=sa pTRV (). (3.3)

Of course, 7(k,n)=(k, -n) and 7(s, €)=(s, €). The effect
of 7 on the various regions in SU(1, 1) is 7(R)=R,
T(Se)=8,, T(S,)=S,, T(S,)=S,.

The orthogonality and completeness properties of the
/)’s can be summarized thus:

'guu.n g[)i/'{")l’a (&) 07(6':1)»"( )
=6(R,R") 8(p" ') 8(p" — p)
deb.ac
“WRIMRY (3. 42)
Farw [ 05 0Rierofnier
=6(g,g'). (3. 4b)

The meaning of integration over SU(1, 1) in the new
parametrization can be understood from a comparison
of Eqs. (2.10) and (2. 17); while the process of integra-
tion over the UIR’s R as well as the weight factor

p(R) and the symbol 5(R,R") are all explained in Sec.
3 of O.

The O(2, 2) spherical harmonics for the region V, can
be defined as follows:

Uj;'(bR,?a) x) :Dgf/(\:,)pa (a(x))’
All the labels p'b, pa collectively form a composite in-
dex like the “m” in the three-dimensional spherical har-
monics Y); and R goes over all those UIR’s of SU(1, 1)
that appear in the Plancherel formula. The manner in
which the above set of functions transforms under
0(2, 2), for any fixed R, can be obtained by using Eq.
(2.9a):

?Lw(bR,L(L(gl)R(gz)x) fap [ dp"Z 0,,,, p,,,,,(gl)

xR, e iR, ).

xeV,. (3.5)

(3.6)
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From here we can read off the UIR of O(2, 2) for which
the functions (3. 5) form a basis: it is the UIR (R, 7(R))
exactly as we found in II. [Since at least locally O(2, 2)
is the direct product of two independent SU(1, 1) sub-
groups, namely of the subgroup consisting of L(g) and
the one consisting of R(g), a UIR of O(2, 2) is the direct
product of one UIR for each subgroup and so is denoted
(R1»R32)- | Therefore, the UIR’s ({k, +), (k,~)) and

((k, =), (k, +)) of O(2, 2) appear once each in //, for
k=1, %, ..., while the UIR’s ((s, €), (s, €)) appear once
each for s =0 and e=0, 1. Next, to discover what UIR’s
of the larger group G appear in #/, we must use the be-
havior of the functions y (x) under P,, and P,,.
Combining Eqgs. (2.9b) and (3. 3), we find

+HR) +H(T(R))

_/wb sy (PysX) = W 5a (f ¢y y 00 (%),
+(R) +(1(R))
_l/(l"(b/.\)ka) (Pygx) =ba U(p'b ,{S) (). 3.7
Here, 1, is +1 or - 1 according as £ is an integral or

half-integral UIR of SU(1, 1). We see that, for each &,
the operations P, and P,, in G mix the two UIR’s

(B, +),(k, = )) and ((k, =), (k, +)) of O(2, 2), so the cor-
responding two sets of basis functions combine to form
the basis for one UIR of G. We shall refer to this dis-
crete sequence of UIR’s of G by G}; the superscript in-
dicates the subspace //, wherein they occur. If, on the
other hand, we set  =(s,¢€) in (3.7), we see that P,
and P,, carry the basis functions of the UIR ((s, €), (s, €))
of 0O(2, 2) into themselves, not mixing them up with any
other UIR of O(2, 2). So the corresponding set of basis
functions forms, with no extension, the basis for a UIR
of G as well; we shall write G,  for this UIR. No super-
script indicating the subspace //, is necessary in this
case, as we will soon see. To summarize the situation
in //,: We have a discrete set of UIR’s G}, of G for

k=1, §, 2, ..., and then a continuum G, , for s> 0,
e=0, 4. Each G, is reducible under O(2, 2), containing
the two UIR’s ((%, +), (k, = )) and ((k, ~), (k, +)) of the
subgroup; each G, , remains irreducible under 0(2, 2),
yielding the single UIR ((s, €), (s, €)) of the subgroup.

Turning to the region V_ let us define the O(2, 2)
spherical harmonics as

% b pa) <x>=a0§/§,)m (ax), xe V.. (3.8)

Then Eqs. (3.6) and (3.7) are replaced by the following:

Yol e r@ =1 am [ ar T 00,0, @)

L(/i’ @* ya), @, (3.92)
g(b' b.pa) (Prgx) = R ba (y(x,Tp(,,/S))(x),
9@'%3) (Pyyx) = ba y(p:(,,:r,,g{<))( ). (3.9p)
From Eq. (3.9a) we see that the functions {/ ~ (/O(x)

form a basis for the UIR ((&,+), (¢, +)) of 0(2,2) when
R =(k,+); for the UIR ((k,-),(k,-)) when R =(k,-);
and for ((s,€), (s,e)) when R =(s,e). Moving up to G,
Eq. (3.9b) shows that P, and P,, mix the two UIR’s
((2,+), (e, +)) and ((&,-), (k,~)) of 0(2,2), so these
two sets of basis functions combine to form a basis for
one UIR of G. We shall write G for this discrete se-
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quence of UIR’s of G. The important point is that each
G; is distinct from (i.e., not equivalent to) each G;, so
we have really different discrete UIR’s of G on 4, and
#.; this is evident from the fact that when reduced with
respect to 0(2,2), G; and G; yield different results. If,
on the other hand, we set R =(s,¢) in Eq. (3.9b), we
see that both P, and P,, act within the UIR ((s,e), (s,€))
of 0(2,2); in fact, they act in exactly the same way as
they did in the case of //,. So the basis functions for
this UIR of O(2,2) form a basis for a UIR of G as well,
and this is just the UIR G, , encountered in #,. To sum-
marize: We have a d1screte sequence of UIR’g G,of G
for k=1, 3, 2, ..., and then a continuum G_, for

s=0, e=0, %, in //_. Each G; contains the two UIR’s
((k,+),(k,+)) and ((2,-),(k,-)) of 0(2,2), and so is in-
equivalent to the UIR G} of G appearing in #,. (Of
course if & # k', G} and G}, are obviously inequivalent.)
The UIR G, of G appears once in //_ as it did in4,, and
is irreducible under O(2,2) as well.

Since the group G commutes with the transformations
(®( of SU(1,1), we conclude: Elements of # in #,
and belonging to the UIR G, of G retain these properties
when acted on by SU(1,1); similarly for elements in
#{. and belonging to G;; while elements in H, or H.be-
longing to G,,, get mixed into one another under SU(1,1).
We should now write down the general forms of such
elements of /. In each case, the dependence on the
angular variables is fixed by the appropriate UIR of G,
the radial functions are arbitrary. The spherical func-
tions {/* R){(x) as defined in Egs. (3.5, 3.8) are eigen-
functions of M,, M,,, and @; since we want to have P,,,
P,, diagonal as well, we must form suitable linear com-
binations of these functions, based on Egs. (3.7), (3.9b).
This is of course the case only if R =(k,n); if R =(s,¢),
P, and P,, are already diagonal. We may also note
that both gi (R)(x) are eigenfunctions of the product P,
P,, with eigenvalue 7, as follows from Egs. (3.7),
(3.9b). If therefore we are looking for an element of //
with P ;=v,, P,,=7.., and belonging to a definite UIR
of G, then we must have n.1,.. =1, which restricts the
possible UIR’s of G that can be associated with chosen
eigenvalues for P, and P,,. This is just a reflection of
the fact that in the reduction of the product Cﬁ@ C‘;, , we
can get only integral type UIR’s of SU(1, 1), etc.

Let us now go through the list of UIR’s of G encoun-
tered in //, and construct the general forms of vectors
belonging to each. This will then make the construction
of the coupled basis vectors in the following section
straightforward. Since we are concerned with the re-
duction of the product C}® C%, where g=%+s? and ¢
=41+¢? we shall work w1th elgenfunctlons of M,; and
M,, with the eigenvalues 2s, 2s’, respectively [cf. Eq.
(1.16)]. For the present, let us indicate elements of H
in the form of Eq. (2.1), using Eq. (2.10) for computing
scalar products. Then, an element f belonging to G, with
(- 1**=+1, and having P,,=P,,=+1 (and furthermore
with M,,=2s, M,,=2s"—this will be understood in
all the following) has this form:

Gy (=1*=+1, Pyy=Pyy=x1,

_ 0
f"f»,('r)( s(’k-:;),-s'-s (a(x)) + 0 (r -s,-s e (a(x))) (3.10)
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if P;=P,,=+1, which goes with the upper (+} sign in
the column vector so that we have a sum of two /) func-
tions, f lies in the subspace of // carrying a product
Cle Cy; if Pjy=P,,=—1, going with the minus sign on
the right-hand side, it belongs to a subspace carrying
Cl/2@ CLY/2. And now if f/ is another vector of the above
form, but with the replacements £ (v) —~f/(r), k—¥,
s~—~s”, 8’ —s” and both f and /' have the same eigenval-
ues for P,,, P,,, then from Bgs. (2.10), {3.4a) we get

1) = By /0BRI6(s™ = 8)8(s” = 8) [ 20%°dr 1 ()1, (7).

(3.11)
Next, if f belongs to G} with (= 1f**=~1, then P,
= Py,=%1,
G;, {~ l)zk: -1, P13:" P24:il’
F=£09) 0
T ( Ee s lal) F DI (a(x))). (3.12)

The upper signs go with products C?®C}/* the lower
signs with C}/?® C3. Equations analogous to (3. 11) can
be easily worked out and need not be stated any further.
We deal next with the UIR’s G},

G, (=1P*=+1, P, =P, =+1,

_ DR o (@) = PR (alx))
f ~f.(1’)( 0 ) (3.13)

The upper signs are associated with products C0® CJ,
the lower ones with C}/?® C}/%. For (- 1)*=-1, we
have,

G;n ("' 1)2k: -1,

7 =f_(r)(

P,=~P,=z1,
e s (@) F DAL (a(x))
0 p (3.14)

with the upper signs belonging to products C’® C3/2, the
lower ones to C!/2@ C2.

If the representation (¢ @ ( of SU(1, 1) is made to act
on a vector which has one of the above forms in Egs.
(3.10)-(3. 14), the only change will be in the radial
wavefunction f,(¥). In other words, acting on the above
types of vectors, the generatorsJ, of Egs. (1.8), (1. 18)
become just differential operators in the variable ». So,
starting with Eq. (1.18) and setting Q = k(1 - &) and x*
=+ 7? therein, we see that on restriction to vectors of
any of the types (3. 10), (3.12) the generators »J, ™!
take up the form J (&, +} associated with the UIR D;, of
SU(1,1) (see Sec. 1of I). This signals the presence of
all the UIR’s D}, for > 1, once each, in the reduction of
the product C @ Cf,'——-whether k runs over the integers
or the half-odd integers depends on ¢ and ¢. Similarly,
the restrictions of »J, ¥ to vectors of either of the
types (3. 13), (3.14) is obtained by setting @ =%(1 - &),
2=—¥? in Eq. {1.18); and this gives us the standard
form J (k, — ) for the UIR D} (see Sec. 1 of I}). This
shows that all the UIR’s Dj for k=1 and appropriate
parity for 2k appear once each in any product C; ® C;,'.

Let us consider now vectors in // belonging to the UIR
G . of G, which is present once in //, and once in
/.. Now, the action of the operator 4 of Eq. (1.5) is
relevant. If is generally given by

J. Math. Phys., Vol. 15, No. 10, October 1974

N. Mukunda and B. Radhakrishnan: The Clebsch-Gordan probtem.

v 1662

f.(r;a(x)\ _ [f.(r;a(Px))
ﬂ(w;a(x») "(f.(r;a(Px»)' (3.15)
We also need to make use of the property
xe V.: _g;:(b”iz,(Px)zag;,(,ﬁZ) (x). (3. 16)

Further, the specification now of the UIR G,. .. of G
and the eigenvalues of M,,, M,,, P,,, P,, does not deter-
mine the form of f apart from one radial function in //,
and another in 4/,; this is because of the presence of the
quantum numbers b, g in both spherical harmonics

(i,(b/? )) {x) when R =(s”,€”). These quantum numbers
cons{{%ute of course part of the state labels within the
UIR Gg. .. of G, so they too are preserved under the
action of (®( just as p/, p are. [Here it is important
that the spherical barmonics for the region V_ were so
defined in Eq. (3. 8) that when R =(s, €) the transforma-
tion laws (3. 9) were identical to the transformations
laws (3. 6), (3.7).] So in writing down the form of f in
various cases, the values of b and ¢ must also be stated.
We now take up the cases one by one. Let fbe a vector
belonging to the representation G,. , of G, and have the
eigenvalue + 1 for both P, and P,, (and, of course,
M,,=2s, M,,=2s"); we are concerned then with the oc-
currence of the UIR CJ. of SU(1, 1) in the reduction of the
product C2® C;. Then f is of one of two possible forms,
corresponding to the labels b, a in the spherical har-
monics obeying either b =a=+or b=a=-. [From Eqs.
{3.7), (3.9a), the eigenvalue of P,, determines the pro-
duct ba. | So the possibilities are,
Gy gy Pyy=Py=+1,

§

b=a=4,

f-(y) g(-s(’s—sig),(-s' -8} (x)

ifJ,(r)y(*s('S-“s;g),(-s' e (%))

f=

AfA = £, FAr) —~FA(7). (3.17)

A vector of the first type, corresponding to the upper
signs throughout, is automatically orthogonal to one of
the second type, corresponding to the lower sign
throughout. They both lie in a subspace of 4/ carrying
the product Cf@ qu, and each preserves its form under
the action of the representation ( ®(; that is to say,
under this action only the radial functions change. In
particular, a vector of the first type does not get mixed
into one of the second type. Thus we see in a natural
way how each UIR C;’,, appears twice in the decomposition
of any product CS®C}, . Next, keeping the UIR of G un-
changed, we consider the choice P,;=P,,=~1, so that
the corresponding vectors lie in a subspace of 4
carrying the product C}/2@ C}/%; now, ba=-, so the
two types of vectors are,

G Pu=Py==1, b=-a=4,

8% ,0

«(s" ,0)
f~(r)_é/(s‘s-s)'2,(~s'-s)7 (x)

:Ff;(’i’) yz;"s:;)(l),(—s' -5)% (x) ’

f=
A = £(n),  f(r)—~fAn).
The possibility of having these two types, again, signals,

the double appearance of C% in C}/?® C}/2. Switching
now to the UIR G, ,,, of G, we must have P = - P, ; if

(3.18)
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P,=+ 1, P,,=
vectors are,

— 1, then ba=~ and the two types of

Geu yj2y Pyg==Py=+1, b=-a=4,
(T) U(;s-'s')ltl,zls -s)x x)
f= ,
:Ff+(/r) UI;S-S')It/,zls ‘-s)¥ (x)

AL —=F (), fln)—~f(r). (3.19)

These two types correspond to the double occurrence of
CX/? in C2® CA/?. And finally, in a similar fashion, the
double occurrence of Cl/? in C}/2®C%, is described by,

Gsu,l/Z? Py==Py=-1, b=a=#x,
-(s", )
f-(T) y(s's-s): {(z-s' -8)t (x)
f= / !
(s",1/2)
if+(r) y:sf-s)t ,2(-3' -$)+ (x)

A FAN =), f()=fAr). (3.20)

The eight types of vectors appearing in Eqs. (3.17)—
(3. 20) are pairwise orthogonal, and as stated earlier
each of them suffers a change in the radial functions
f«(7) alone under the action of ( ®( . The restrictions
of the total generators J,, of Eqs. (1.6), (1.18) to any
one of these eight types of vectors are just 2X2 matrices
with differential operators in 7 as entries. These re-
strictions are easily obtained by starting with Eq. (1.18),
replacing @ by §+(s7’)?, and x? by #7? accordingly as
J, acts on either f_(7) or f (7). In this way one easily
sees that on restriction to vectors of any one of the 8
forms in Eqs. (3.17)—(3. 20}, the generators rJ, rt
have the standard appearance of the generators J (s, €")
associated with the UIR C%., as set up in Sec. 1 of I. At
the same time we note that we have taken care to define
the radial functions f(7) in such a way that in all cases
the outer automorphism operator 4 just has the effect
of interchanging f_(#) and f,(); this is the standard form
of 4 as well, as given in Eq. (1.19) of I. Finally, the
value of ¢’ is directly correlated with the product P, P,
Therefore, the interpretations given above for the vec-
tors of types (3. 17)—(3. 20) are unambiguous.

4. THE BASIS VECTORS FOR /{ AND THE
C-GSERIESFOR ( & (

We have found in the previous section the forms of
vectors in // that are eigenfunctions of P,,, P,,, M,;, My,
and also belong to definite UIR’s of G. Now we will ob-
tain the two types of basis vectors for // described in
Sec. 1. These vectors will be set up in the simplified
form of Eq. (2. 20) which is an adequate representation
of eigenvectors of P,, and P,,. However, one must bear
in mind the fact that the eigenvalues of P,, and P,, do
not appear explicitly in the representation (2. 20), but
must be stated or understood separately.

Let us start with the uncoupled basis vectors . We
must here use the analysis of the representation ( of
SU(1, 1) given in Sec. 2 of I. The vector & belonging to
the product C:® C can be displayed as

(4.1)
with p(p’) being the eigenvalue of J,((, 13)(J,((, 24)),

(s€) (s¢’)
AR A
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and a(a') the eigenvalue of 4,,(A,,). Such a vector is
the product of a function of the variables x,, x; and an-
other function of x,, x,. It is necessary to specify the
former only in the regions x,> Ix,|, x, > Ix;| and the
latter only in x,> |x,, %,> |x,|. Suppose we had in-
troduced hyperbolic variables separately for the pairs
x,, %, and x,, ¥, on the lines of Eq. (2. 23) of I, namely,

fxgxx, i x> x|
pexp(in)—{xlixa if x> %)’
, o fxgrx, i x> x|
P explxm )—{xzix4 i x> Ix,l. (4.2)
Then apart from numerical factors the vector, (4.1) is

given by

q,(se) (s’ s )

1
ba »a ~exp(2isn)(p)i? <a> ® exp(2is'n’ ) (p "

(). 9

The first column vector is the above-mentioned function
of x, and x, with the upper entry corresponding to the
region x, > |x,| and the lower one to x;, > 1x,|. Similarly,
the second column vector is the function of x, and x,,
with entries corresponding to x,> |x,1, x,> |x,|, re-
spectively. To put & into the form of Eq. (2.20), we
must relate p, 0, o/, 0 tor, ¢, ¢’ and u or v appro-
priately in each region. We also note that in Eq. (2.20),
the first entry gives f in the region x,> Ix,|, x,> Ix,l;
the second and sixth give fin x,> |x,|, x,> |x,| and
correspond to x“x, Z 0; the third and fifth cover x, > |x,1,
%,> 1%,1, and x*x, 20, respectively; while the fourth
entry gives fin x,> |x;1, x,> |x,]. Identifying the vari-
ables appropriately and putting in the normalization
factors, we have

q,(se) (s e ) (2,",) exp[z(s' _ S)E— Z(S' + s)g’]‘}’z'“’”")'z

(cos /2P (- sin p/2)3#'~
a'(cosh v/2)?¥*! (sinh v/2)%¥ -1

x | a(sinhv/2)?¥#"1(cosh y/2)?* -1
ad (cos u/2)2#1 (- sin u/2)?# 2
a(cosh v/2)?!1 (sinh v/2)%¢# -}

a (sinh v/2)?'#1 (cosh v/2)2¥ -

(4.4

[This is in the notation of Eq. (2.20).] Fortunately, this
six-component column vector, and the later ones cor-
responding to the coupled basis for //, can be written as
the direct product of a two-component vector by a three-
component one, which makes the writing a little easier:

q,(.;;) (; ; ) __(2,")-2 exp[i(s’ - s)g_ i(S' + S)gl],rZi(l»P' )-2

1 (cos @ /2)2¥" (= sin u/2)?1# 2
x (a ,) ®[ @ (cosh v/2)?i#-1 (sinh p/2)?i# -1
¢ a(sinh v/2)**** (cosh v/2)%¥ - 4.5)

These vectors are normalized according to
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(syey) (syep) (se) (s"¢")
o p18 ppaj ’(bpa va
=08(s, — s)6(s} - s’)éele Beser

X0(py = D) 8Py =) By Dyt (4.6)

Turning now to the coupled basis vectors ¥, there are
essentially three types to be constructed, corresponding
to the single occurrence of each UIR D; and each UIR
D;, and the double occurrence of each UIR Cg.' in a pro-
duct C;® C: Most of the work in constructing the ¥'s
has been done in arriving at the general forms in Eqgs.
(3.10), (3.12)—(3.14), (3.17)—(3.20) for eigenvectors
of M,, P,,, M,,, P,,, and Q. Only the radial functions
are to be chosen so as to obtain eigenfunctions of J, and
A. The coupled vectors ¥ corresponding to the final UIR
being D; or D}, can be written in unified form thus:

YOO E0L) (42 (k) explils’ - )~ (s + $)¢']

X ,},21'?" -2 0
1

9 (k+)(sl - s, -5 ‘s;ﬂ)+ne'g<k-)(3' -s, —S'—S;H)
|l 75 (s’ =5, =8 —s;550) +n,, FH*Ns"= 5, ~ 5'= 5;1;0)
(k) S’-—S,—S’—S'V'3)+T]: (k=) S'—S,—S’—S'V'3

27y € '

(4. 72)
Plsers e >(§;) =(47T3)'1/2 uik) exp[i(s'— s)e —i(s’ + s)§’]

1
ir" -2
| < (5)
G*US =8, =8 =s5u) 1. GF(ST = s, = 8= s50)
| 7%(s’'=s, - &~ 5;130) + 0, 7 ('~ 5, = 8" = 5;1;0)
FENs =5, - 8" = 5;133) + 1, FFU(s' = 5, — 8 = 5;133)
(4. Tb)

Just like ¢ in Eq. (4. 5), these are shorthand expres-
sions for six-component vectors as in Eq. (2. 20); thus
when written out in six-component form the first three
entries of the vector (4. 7a) vanish, while (4. Tb) has its
last three entries vanishing. Turning to the third type
of coupled basis vector, a form valid for all cases can
be given:

Plse)s e )(;,’:;": w = (473)"1/2 w(s”er) exp[i(s’-— s)t - i(s
sy i

(SN (g~ 5, ~ 8" = S;44)
1 .
X (a">® FET N s = s, - 5" = 5;1;0) ],

e (g — 5, = 8" = 5;1;3)

a=>bn.. (4. 8)
The value of ¢ is determined in the natural way by € and
€. p” and a” are the eigenvalues of J, and /4, respec-
tively. The two values b =+ distinguish the two occur-
rences of C,,' in C;® C;. ‘
Vectors of type (4. 7a) are orthogonal to those of

types (4. ') and (4. 8), and so are the latter two. Among
the vectors of each type the factors have been chosen so
as to have

(‘11(5151)(3'15'1)(’?1*)

o , ‘I,(ss)(s'e’)(l;tl)) :6(31—3)6(3'1—8')

Xéele 55'16' 5k1k6(p’1’_p”), (4. 9a)
(‘Il(sls1 Y (s]e) ) (syeyIb, \Il<se Yt e )(s"e")b) (4. gb)
- vy af s e
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=0(s; - $)0(s) = 8") 8 Oy (] —5") Beyeen By5 0(PF = 1")
X 5“‘1’ a*
From the existence, orthogonality and completeness

of the coupled basis vectors ¥ there follows the struc-
ture of the C—G series

CieCi= L Die X D@2 [  dgCi. (4.10)
k=>1or3/2 k=1or3/2

It is interesting to point out the following two features:
(i) the UIR’s Dj,, do not appear in the C—G series here
because they do not appear in the Plancherel theorem for
SU(1, 1); this was also the reason for their absence in
the reduction of D® Dy, ; (ii) the appearance of C;.’ with
multiplicity two is here related to the fact that within

the continuous class UIR’s of SU(1, 1) each eigenvalue of
J, also appears twice, leading to the necessity of using
extra labels such as b, a.

5. C-G COEFFICIENTS IN A CONTINUOUS
BASIS

It now remains only to compute the three distinct kinds
of C—G coefficients, namely,

C(se s'¢ Rb|pa p'a pra’)
=5(p" ~p—17)Clse s’¢ Rb|pa pa a”),

for R =(k, +), (k,-), and (s”,€"). Here b=z isa
multiplicity index labelling the double appearance of the
UIR (s”,€’) in the reduction of C¢(1/4,s2)0 C* (1/4.s'2).

1t is to be omitted if R = (&, +) or (k, -).

From Eqgs. (4.5) and (4. Ta) we find
Cose s'€ b+ |pa pra)=(1%/%/4) u(k) (ad fj (= sinp)dp
X (cos /2)2it"1 (= sin p/2) 2 1 [ s/ = 5, — '~ s;1)
+0,. G*(s' =5, = 5" = s;u)]
+a fow( sinhv) dv (cosh »/2)"2#1 (sinh v/2) 24" -1 [ 7% (s’
~s, - 8- §;p30) 41, FES =5, - ' = 5;1,0)]
+a f “(sinh v)dv (sinh v/2)2*1 (cosh v/2)2i# -1
X[F®Ns' =5, =8 = 5;0;3) + 7 FEN(s' =5, = 8"~ 5;133)]).

(5.1)

The trivial integrations over ¢, ¢’ and 7 have been per-
formed and the last of these integrations yields thg
factor 5(p” - p — p’), dropping which we arrive at C. In
order to carry out the remaining integrations over p
and v we need the relevant expressions for g &) and
7 which we quote from Ref. 4.

G*(s' =5, ~ 8" = s5) =(27)'exp(Fs'm)

exp{- i[n (s’ - 8) —n— &' = s)]}

X T(=2is') (k38" — s, — 8" = s30) +(27) "  exp(+ s’ )

X expfi[n,(s’ = ) = (= s' = Y}T(2is’) Py(k;8’ = 5, = 8’ s; 1),

for —T<u<0, (5.2)

where
Dk;s' =5, = 8= s;u) =(cos? p/2) ¥ (sin® u/2)"",F (&

—is+is’, 1-k~is+is’; 1+2is’; sin®p/2),
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PolB;S = 8, — 8" = s; ) =Py (k;— '~ 8, 8" = S5 1), (5.3)

and n,(x) =arg I'(k — ix),

7N s =5, = 5" = 5;1;0)=(2m) L exp(F ' 7) exp{-i[n,(s
- 8) =1~ —s)]} T(-2is’)

X ¢, (k;8" ~ s, — 8" = 8;0) + expli[n (8" - 8) =1, (- s~ )]}
T'(2is') p,(k;s'— s, — 8" = 53V)

for 0 spy< e, (5.4)

where
B,(k;s’ = s, — "= 5;v) = (cosh? v/2)%(sinh? v/2) F (R
—is+is’, 1-k—is+is'; 1+2is’; — sinh®y/2),

Oy(k;8" =5, — 8"~ s;V)= ¢, (k;— 8" - 5, & —8;V), (5. 5)

FENs =5, = &~ 5;1;3) =(~ 1) exp(xink) 7 (s’ -5, s
(5.6)

From (5.1)—(5.6) we see that we have essentially the
following integrals to evaluate:

L(s, s ;p, ' ;k) = ﬁ(— sin ) dp (cos p/2)2#7 (= sin p/2)2H

+ s;1;0).

Xp,(k;s" =5, — 8" = s;4), (5.7a)
and
M(s,s";p, P ik)= fon (sinh v) dv (cosh v/2)2*#* (sinh v/2)-2¢# -1
X ¢,(k;s'— 8, — ' = s;V). (5. Tb)

These integrations can be carried out using the method
employed in I, II, and III. We omit the details and
simply quote the results:®

[(4 = is — ip) T4+ is’ = ipf)

Lis,s"p ViR =2 Tq oiis - ip—ip)

k—is+is’, 1-k—is+is’, $+is’ —ip

x3F2 ;1 s (5.83.)
1+2is’, 1-is+is’' —ip-ip
. o D(R+ip+ip ) T(3+is ~ip)
M(S,S ,p,p',k)_z I‘(k+§+is’ +zp)
B-is+is’, k+is+is’, L+is" —ip
X F, ;1. (5. 8b)

1+2is’, B+L+is' +ip
It is easy to see that
i) f (- sin p)du (cos p/2) 242 (~ sin pn/2) 24 1y, (k;s — s,

- 8= s;u)
=L(S’ - ;p’p' ;k)
fow (sinh v)dv(cosh v/2)2i#1 (ginh y/2) ¥ -1
X ¢2(k;8'—8,—S’—S;V)ZM(S,—S';plp';k). (5.9)

In the integration involving 7'*) (¢’ - s, - s’ - s;1;3),
we will also need

fom (sinh v) dv (sinh v/2) 2" (cosh v/2)2¢# -1

X ¢, (k;s"—s,8 +s;0)=M(~-§',Fs;V, p;v). (5. 10)
2

Putting all this together we finally obtain
C(se s'¢ k+ |‘pa pa)=(n*2/4) u(k)aa (G(k +) +n.G(k~))
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+a(F(k+;0)+n,. F(k—;0)+ & (Fik+;3)+n,. F(k—;3))],

where we have set (5.11)

G(k ) =(2m) L exp(F &' m) exp{— i[n (s’ ~ s) —n (- s - 8)]}

(- 2is’)L(s, 8";p, ' ; k)

+(27)  exp(x 8" m) exp{i[n (s’ ~ s)—n (-5 —s)]}

I(2is' ) L(s, = &'30, 73 k),

F(k +;0)=(2n)" exp(¥ s'7) | exp{—i[n, (s’ - s) =n{- s’ = s)]}

(- 2is’"YM(s, s’;p, P ;R)

+ exp{iln (s’ = ) — - s' = s)]} I(2is’) M(s, — s";p, P/ ;k)] \
(5.12b)

(5.12a)

and

F(kx;3)=(27)* (- 1)**exp[+(s + ik)7)

[exp{i[nk(s’ +58) =N (s - s)]} T(2is)

XM(~s', - ;0 , p;k) + exp{~i[n (s’ + s) = n s’ - )}

(- 2is)M(-s’, s;p’,p;k)} . (5.12¢)

By an identical procedure, but using (4. '76) instead of
(4. 7a) we get

C(se 8¢ k=|pa pa’)=(n/2/4) p(k) [(G(E+)+n. G(k-))

+a(F(k+;0)+n. F(k—;0))+ a(F(k+;3)+n,. F(k-;3)].
(5.13)

Turning now to the third ( and final) case, we have

C(se s'¢ s’ blpa pa a”)=(r3/2/4) u(s"¢") (1 + aa o)

X [°(= sin p) dy (cos /2y (= sin pu/2)-2# -1

X Gyt (8= s, - 5" - ;)

+(a +aa") fo“’(sinh v)dv(cosh v/2)2#-t (sinh p/2)2i# -1

X Fie (g7 - s, =8 - 5;p;0)

+(a+aa") [ (sinh v)dy(sinh v/2)#" (cosh v/2) 2 -2

X Fsren (s'—s,-S’—S;V;3)), (5. 14)

where

c=by,.

We again quote the relevant expressions for G (3" ¢’ and

s5"¢") from Ref. 4.

G s =5, = 8" = s3) = (20) 2 T(} + is +is’ — is”)

X T(3 —is +is" +is”)

X T(~ 2is’) [cosh(s + §” = " )1 + bc cosh(s — &' - s” )

— i wC sinh 25’ 7]

XY *(s" ;=8 = 5,8 = s;u) + (27) 2 I - is — is' — is”)
X T($+is—is’ +is”)

X T(2is’) [cosh(s — s’ + 5" )7 + bc cosh(s + s’ + s* )7

+ i, b sinh 25’ 7]
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XPp¥(s"; -5 — 5,8 =s;u), for —mw<p<0. (5.15)
The g*(s”;— '~ s, 8"~ s; 1) are obtained form
zj)%(k;- §'=s, 8'— s; ) defined in Eq. (5. 3) by making the
replacement  — } +is” and then taking the complex
conjugate.
N s = s, = &' = 53030) = (27)E (5 - is + i’ +is”)
X T(:+is+is’ —is”)
X (= 2is’) [cosh(s + §'~ s" ) + bc cosh(s — s’ — s” )7
—ib sinh 2¢'7)
X (8”8 =58, -8 —8;0)+ (2m) 2 (5 +is—is’ +is")
X T(% = is = is’ = is”)
X T(2is’) [cosh(s + s’ + s” )7+ bc cosh(s — &’ + 3877
+ 1. b sinh2s’ 7]
X hy(s";8"' =5, —§'=s;v), for 0 spy< oo, (5.186)

Here again ¢>5(s";s'— s, — 8’ ~ s;v) are obatined by making
the replacement k— 3 +is” in Eq. (5.5):

(s €)

S (81— 5, ~ 8" = 8;153) =N, € },ﬁf;’::;(s’— s, s’ +s;v;0).
(5.17)

Referring now to Eq. (5. 14) we see that we again need
the analogs of L and M defined in Eqgs. (5. 7a) and (5. Tb).
We define these as follows:

L(s,s"sp,'35") =" (= sin p)du(cos j/2)2# (= sin p/2)*' -1

X X(s"; = s =5, 8" = s3p), (5.18a)

M(s, s';p, p';s"):f;> sinh v dv (cosh v/2)2¢# (sinh y/2) 2" -

Xp,(s";s'—s,~8 —s;V). (5. 18b)

The evaluation of these integrals proceeds along the
same lines as before and we get

T +is’ —ip') T +is — ip)
T(1+is+is' —ip—ip')

L(s, s ;p, p';8")=2

L e s ) L e s . L, .
z+tist+is'—is”, z+is+is’ +is”, z+is’ —ip
X3Fy ; 1],
1+2is’, 1+is+is’ —ip-ip

(5. 19a)

(5 +is” +ip+ip ) (5 +is’ —ip')

’. oy r
M(s, s'sp, 1/ 38") =2 T(1+is +is” +ip)

L-is+is’+is”, s+is+is +is”, 3+is’ ~ip
X F, ; 1).
1+ 2is', 1+1is’ +is” +ip
(5. 19b)
And we also have

f_: (- sin p)du (cos p/2) 217 (sin u/2) 2 "1 g, *(s" ;' - s,
-8 = S;1)
=L(s, - 8';p, 138", (5. 20a)

and
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fo?sinh v)dv (cosh v/2)2##-1 (ginh y/2)2#' -1
Py(s";8" =8, = 8" = 5;V)
=M(s, - §';p, p';s").
In evaluating the third integral in (5. 14) we also need
J. (sinh v)dy(sinh v/2)"2%#"1 (cosh v/2)-2i#' -1

O,(s";8" -5, 8" +s;v)
2

=M(-s',Fs;p', p;8”"). (5.21)
We can now write down the C—G coefficient:

C(se s¢ s"e'b |pa pa a”)=(73/2/4) u(s”€”)

X[(1+aa’ a”) G, {s"€" )+ (a + aa”) F, (s" € ;0)
+(a+da")F,(s"€;3)], (5.22)

where

G, (s"€)=(2m) 2 (5 +is+ is’ —is") [(3-is+is’ +is")
X I(~ 2is’)

X [cosh(s + s’ — s” )7 + bc cosh(s - s’ = )7

- in. csinh2s'7]L(s, s';p, p';8")
£(20)2 D& - is — is’ — is”) T(% +is —is’+is”) [(2is’)
x[cosh(s = s* + s” )7+ bc cosh(s + s’ + s" )

- in b sinh2s’ 1] L(s, - s";p, ' ;s”), (5. 23a)

F,(s"€;0)=(2m)2 (3 —is +is’ +is") (3 +is +is’ - is”)
X T(~ 2is’)

X [cosh(s + s’ — s” ) + be cosh(s — s’ — s* )7 — ib sinh 2¢’ )

X M(s,s";p, p';8")

+(27)2 T (3 +is —is’ +is”) (5 —is—is —is”) I'(2is")
X[cosh(s + s’ + s”)m+ bc cosh(s — s’ + s” )7 + in .. bsinh 2’ 7]

XM(S,—S';p,I)';S”), (5.23b)

and

F,(s"¢€;3)

=N ¢ {(20) 2 I3 —is +is +is”) I3 - is — is’ — is" ) I(2is)
X [cosh(s + s’ + 8" )1 +n,. bc cosh(s — s’ — s” )7+ ib sinh2s7]
X M(=s', = s;p’, P;8")

+(2m) 2T +is —is +is”) (5 +is+is’ —is”) I(- 2is)

+neube cosh(s — s’ + s”)m —in,.. b sinh 2s7]

X M(-s’,s;p’, p;s”). (5.23c)

This completes the evaluation of the C—G coefficients
in the continuous basis.

SUMMARY

We first make a few comments on the present paper,
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and then on the entire series of which this forms the
concluding part. Following the approach of the previous
papers, we have established a connection between the
Clebsch—Gordan problem of SU(1, 1) for products of the
form C; ®C§,' and the structure of spherical harmonics
for the group 0O(2, 2) in an O(1, 1)®0(1, 1) basis. By ex-
ploiting this connection, we have explained the form of
the C—G series for this case in a new way, and have
also obtained the C—G coefficients in an O(1, 1) basis.
As in the previous cases, these coefficients are expres-
sible in terms of the generalized hypergeometric func-
tion ,F, with unit argument. However, the actual ex-
pression for the C—G coefficient corresponding to the
case C;® C:,' — Cf,', say, is rather lengthy and involves
several terms, in comparison with the cases D*® D* —D*
for example. As in the case of the products D;® D;,
treated in II, the reason why the representations Di ,,
never make an appearance in the reduction of C:® C:,' is
understood satisfactorily; it is directly related to their
absence in the Plancherel theorem for SU(1, 1). But the
absence of Dj,, in the products D;® C; had a somewhat
different explanation, being related to the structure of
spherical harmonics with respect to the group 0(3, 1).
This is explained in III. We have also explained the
double occurrence of each Cg' in Cf @ C;/ (for appropriate
choice of ¢) in a new way: It happens becauce within a
continuous series UIR of SU(1, 1) each eigenvalue of a
noncompact O(1, 1) generator appears twice.

The calculations of the C—G coefficients that we have
performed in the four different cases of products, and
the expressions that we have given for them, are mutu-
ally consistent in the following sense. At the beginning
of the investigation we set up standard forms for each of
the UIR’s of SU(1, 1) that were of interest, namely D%
and C; for ¢ > ;- And we made sure that any such UIR
whether present as a factor in a direct product R @ R’
or as a summand in the direct sum decomposition of a
product was always, exhibited in the standard form.
Further, the choice of the O(1, 1)-basis vectors within
each UIR of SU(1, 1) was specified completely, with no
uncertain phase factors, in I, and this choice was ad-
hered to throughout in setting up the uncoupled and
coupled basis vectors for each product R ®R’. However,
the question arises as to the form of the SU(1, 1) rep-
resentation matrices in the O(1, 1) basis that must be
taken with our expressions for the C—G coefficients.
Let us write ﬁp(,/b{pa (g) for these matrices. They are such
that they obey, along with the C—G coefficients that we
have calculated, the following equation:

0@ B, 0= f ap” T [T av, 7 any

X A(RR"R")
XC(R R' R" y|pre p"d p,f)
XC(R R'R” v|pa p'b pre)*.

~(R")

51" frtye &) (6.1)

The form of this equation follows from the way the
various states have been normalized, as set forth in
Sec. 4 of I. The precise definition of the measure dR”
is given in Sec. 3 of II; and the function A(R,R";R") is
unity if R” occurs in the decomposition of R ® R’ and
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vanishes otherwise. So for given # and R’, the range
of the R” integration is determined by the appropriate
C—G series listed in Sec. 2 of I. Now the representation
matrices E(R)(g) are of course completely determined
by the standard forms that we have set up in Sec. 1 of I
for the various UIR’s. On the other hand, in Ref. 4, a
calculation of the representation matrices in an 0(1, 1)
basis has been carried out for all the UIR’s of SU(1, 1),
using a different description of the UIR’s. These ma-
trices, 0’(’[\; (g), are just the ones we have used in
Sec. 3 in sefﬁng up the 0(2, 2) spherical harmonics in
an O(1, 1)@ O(1, 1) basis. Equation (6. 1) will not be
valid if we were to replace /) by /) everywhere. Instead
of calculating ﬁ(R )(g), it is enough to relate them to
D(R )(g); this relation must necessarily be of the form
D L/f,),,,, (g) = explio(R;p", b) = ig(R ;0. )] D (,/§ ,)pa (8)
with @(R; p, a) a real quantity. By making @(R;p, a)
=@(T(R );p, a), we secure the property

R (wten=ba TR (g) (6.3)
for /), analogous to Eq. (3.3) for /); and then this makes
Eq. (6.1) above and Eq. (5.4) of I, describing the effect
of 7 on the C—G coefficients, mutually consistent. The
values of @(R;p, a) turn out to be®

(6.2)

@(k+;p)==p In2+arg I(k-ip), (6. 4a)
@(s€e;p,a) =—pln2 —arg I(L + is + ip)
= arctan[n, a exp(- (s + p)m)]. (6. 4b)

We emphasize once more that a mutually consistent set
of O(1, 1)~basis representation matrices and C—G co-
efficients, in the sense of the validity of Eq. (6. 1), is
given by D~ R (g) and the C—G coefficients as calculated
by us, and nof by /) {g) and these coefficients.

It is unfortunate that in our analysis of the Clebsch-
Gordan problem for SU(1, 1) we had to exclude the UIR’s
of the exceptional interval, C? for 0<g< 1 in the forma-
tion of direct products. This was because a simple con-
struction of these UIR’s in terms of oscillator operators
is not possible, while on the other hand it is just such
constructions of the other UIR’s that led to the higher
symmetries that we have exploited. It would be
interesting to extend our analysis to include the excep-
tional UIR’s and to discover corresponding symmetries
in the problem.

A useful byproduct of our work has been the construc-
tion of complete sets of spherical harmonics in four-
dimensional real space with respect to the various
groups O(p, q) for p+q=4, p=gq. Of course the fact that
the O(3) representation matrices DY, (R) form a com-
plete set of spherical functions on the unit sphere in four
dimensional Euclidean space is very well known. We
have made explicit the analogous connection between the
SU(1, 1) representation matrices and the 0(2, 2)
“spherical harmonics”. In all cases, our constructions
keep a maximal commuting subset of the O(p, q) gen-
erators diagonal. In the third paper of this series, we
had to deal with the group O(3, 1), which is the one case
that does not simplify to a lower-dimensional group.
Here we had to construct spherical functions for both
the “timelike” and “spacelike” regions. The former
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are reasonably straightforward, while the latter are
more involved. Our expressions for the 0(3, 1) spherical
harmonics in the spacelike region, in an O(2)® 0(1, 1)
basis, are new and do not exist in the previous litera-
ture. These may be of use in various problems involving
the (3 + 1) Lorentz group. The O(3, 1) spherical harmon-
ics for the same region but in a basis in which the O(3)
subgroup of O(3, 1} is “diagonal, ” have been presented
in the literature.”

The concept and use of the generating representations
D ( of SU(1,1) seems to us to be quite novel and in
principle capable of extension to other groups. It gives
a convenient and elegant way of dealing with a large
number of UIR’s of a chosen noncompact group, G, say,
in a unified manner. The decomposition of a generating
representation of G, into UIR’s of G, would be accom-
plished by looking for a sufficiently large group of
symmetries of this representation. And if the direct
product of two generating unitary representations of G,
has a symmetry group larger than the direct product of
the individual symmetry groups, then from the rep-~
resentation structure of the symmetry groups we can
learn something about the C—G series for G,. For
groups of larger dimension than SU(1, 1), the analog of
the construction of spherical harmonics for appropriate
symmetry groups may be quite involved, and not
practical. Nevertheless, this general method can be
useful in that it may explain the structure of certain
C—G series for G,, though the calculation of the C~G
coefficients may be much harder. In the present work
we have been particularly lucky since the problems of
dealing with the symmetry groups 0(4) and 0(2, 2) were
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greatly simplified by the relationships of 0(4)
=0(3)® O(3) and 0(2, 2)=0(2, 1)@ 0(2, 1). We hope to
examine these questions elsewhere.
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A general transform technique is developed for multiregion critical problems. The equivalence of a
replication procedure and a derived boundary condition approach is demonstrated for the general
multiregion geometries. An exact representation for the particle density may be obtained using this
approach in the form of singular integral equations or equivalent Fredholm equations for expansion
coefficients which arise from the superposition of the normal modes representing the particle density.
The method is specifically demonstrated in the determination of solutions to the two-region critical

cylinder problem.

1. INTRODUCTION

Since the application by Case’ of the singular eigen-
function expansion technique to solving the Boltzmann
transport equation for neutron distributions in plane,
homogeneous, isotropically scattering media, extensive
investigations have been made to include more realistic
assumptions of anisotropic scattering, time-dependence,
multigroup, and energy dependence for distributions of
neutrons and photons. Several investigations have been
made to extend the method to nonplanar geometries
using various techniques applicable to isolated cases.?3
One procedure, referred to as the transform approach,
has evolved which can be employed in a general manner
to a variety of transport problems, greatly extending the
class of problems solvable using the other techniques.

Leonard and Mullikan®* were the first to suggest the
idea in an application to neutron transport in spheres.
Mitsis® extended the transform concept to include criti-
cal problems in single region, one-dimensional slabs,
infinite cylinders and spheres. In a classical mathemat-
ical approach Gibbs® demonstrated general applicability
in three-dimensional, arbitrary convex bodies consist-
ing of a single homogeneous material, where arbitrary
source distributions were permitted.

The techniques employed by Mitsis and Gibbs were
similar in philosophy. Basically each consisted of re~
ducing the integral form of the transport equations to an
equation for a transform function which could be solved
using Case’s method. The particle density could then be
represented by a simple integral of the transform func-
tion. The two methods differed radically, however, in
the method employed to derive eguations which must be
satisfied by the expansion coefficients for the normal
modes comprising the transform function. Mitsis’s pro-
cedure was somethat formal in that “boundary condi-
tions” were derived from the definition of the transform
function, and no mathematical evidence was given to
assure validity of the transform procedure. On the
other hand, Gibb’s method made use of the replication
properties of the transform eigensolutions and assured
a consistent mathematical foundation for his transform
procedure. To demonstrate the equivalence of the two
methods Gibbs showed his singular integral equations
for the expansion coefficients were identical to those
obtained by Mitsis with his boundary condition approach.
Thus, for single-region problems, the mathematical
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rigor of the more easily applied Mitsis procedure could
be inferred from the work of Gibbs.

The extension of the transform concept to bodies con-
taining regions of differing multiplication has been ac-
complished by Smith and Siewert” and Sheaks.® The
former paper determined solutions in two-region
spheres; the latter presented solutions for the particle
density in an annular region surrounding a central
black cavity. In each case a procedure analogous to that
of Mitsis was employed. However, the technique lacked
generality, being dependent on the specific problem
analyzed. Also, the mathematical rigor of the method
was not proven since the analogy to Gibb’s single-region
analysis was no longer applicable.

The purpose of this paper is two-fold: we demonstrate
that the boundary condition method and the replication
method are in general equivalent for multiregion prob-
lems; in addition, we extend the transform technique to
multiregion cylinders by determining solutions for the
two~-region critical cylinder problem.

Il. MULTIREGION TRANSFORM TECHNIQUE
We consider the general form of the equation® de-
scribing particle transport in a convex region, V,

n(l‘)=fv dr'{c@n(x’) +S)]K(|r-r|), reV,

2.1)

where n(r) is the particle density, c(r) is the mean
number of secondaries per collision, S(r) includes con-
tributions from a flux incident on V and from distributed
sources within V, and distance is measured in units of
the total mean free path. We assume isotropic scat-
tering and an invariant total mean free path throughout
V, and that V can be subdivided into N subregions, V,,
where ¢(r) has constant values, c;.

The transfer kernel under these assumptions becomes

K(|r])=e'*/an|r . 2.2)
Noting that we can write
dpelrl/p /ldu
,) / u 4Tf|r| - A /J'z G(,r,?“’) (2'3)
and that G(r, u) satisfies
(=v2+1/p)Gle -1, u) =8(r -r’), 2.4)
Copyright © 1974 American institute of Physics 1669
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we proceed in the manner of Gibbs to write

n(r)=fl%§ip(r,u), rev, @.5)

where
F(r, )= [ dr'lc@n(e) +S@)]G(|r -], p). (2.6)

Equations (2.5) and (2.6) are thus considered a trans-
form pair, and F(r, u) can be shown by substitution to
satisfy

<'V2+Ti2_> F(r,p) - c(r) fi—‘iF(r,uhS(r). 2.7)

The basis of the transform procedure consists of con-
structing solutions to Eq. (2.7) such that Egs. (2.5) and
(2.6} are mutually consistent. We note that while the
single-region transform procedure has been followed to
this point, Eq. (2.7) is not separable over r and 4 and
a new technique must now be employed.

We continue with a procedure followed extensively in
multiregion reactor physics analysis, i.e., in lieu of
determining the general eigensolutions of Eq. (2.7), we
find solutions for each subregion, separately. Thus we
consider N-subregions for which the transform function,
F,(r, u), defined in that region satisfies

1 !
('v2+—z) Fi(r,u)“if L (e, w)=S(),
Il o M

i=1,N. (2.8)

The homogeneous solutions of Eq. (2.8) have been
presented in detail by Mitsis and Gibbs are presented
here for completeness of presentation. Assuming
separation of variables we find

Fi(r’I—L)=defi(V;“)Ri(r’V) (2-9)
where R,(r,v) is a solution of
(=92 +1/1AR,(r,1) =0, reV, (2.10)
2
fi(V’ /J-) =0152Vi#“2 + V27\¢ (V)[G(V_ Ii) + 6(V'|' IJ«)]VG [0;1];
(2.11)
N (p)=1-c,vtanh™v, 2.12)
_CivB
fi(’/ou“)—v(z)i_#z, (2.13)

in which 6(x) denotes the Dirac delta-function, P indi-
cates a Cauchy principal value integration, and v, is
the positive root of the dispersion function

Az) =1 =c,ztanh™(1/2). 2.14)

The function R,(r,v) can be constructed from a linear
superposition of an appropriate basis set of the null
space of the operator (~v?+1/17). Choosing a basis
sufficient for the compatibility of Eqs. (2.5) and (2.6),
we can write

Fy(r, )= [ avf,(v, W2 Aj0)R}(r, v), (2.15)

where the integral sign is used mnemonically to include
the discrete eigenvalue and the values of ve Re[0,1].
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For regions containing distributed sources or when
particles are incident on the external boundary, particu-
lar solutions to Eq. (2.8) may be constructed by a vari-
ety of techniques. In a general manner, the classic
Green’s function is readily applied thus representing
the particular solution in terms of the homogeneous
functions derived above. In this paper, however, we
consider only multiregion critical problems and thus
simplify the notation considerably.

lil, EQUIVALENCE OF TRANSFORMS

Having determined a general solution for the trans-
form function F(r, it), we now have a choice of two
techniques to derive equations which must be satisfied
by the expansion coefficients, A’,.'(v). The extension of
the Mitsis technique would consist of deriving pseudo-
boundary conditions directly from the definition of the
transform function, Eq. (2.6). Using the Gibbs analogy,
Eq. (2.15) is substituted into Eq. (2.5), the resulting
expression for the density is inserted into Eq. (2.6),
and the replication properties of the transform functions
are employed to obtain necessary conditions on A;'(v) to
cause agreement between the resulting expression for
F(r, 1) and that of Eq. (2.15).

Since the boundary condition approach is more easily
facilitated, it is useful to establish the equivalence of
this method to the more fundamental and rigorous
replication method. We begin with the replication
approach to a one-dimensional multiregion system
with N homogeneous subregions with dependent variable
7, where planar, cylindrical, and spherical geometries
are included. For simplicity of presentation we consider
only critical problems, thus eliminating particles in-
cident on the outside boundary and distributed external
sources.

Because of the above assumptions a sufficient basis
set for the spatial functions, {R}(v,r)}, consist of a
single pair of linearly independent functions. For sim-
plicity of notation the following analysis is presented
for only one of the functions without loss of generality.
Thus we write

Fr,w)= [ avf,(v, A, (W)R,(v,7) 3.1)
and

n,(r)= [ dvA,(VR,(v,7), 3.2)
since

1
S auf,v,p=1.
From the definition of the transform function Eq. (2.6},

N

F (r,u) :gfvjdr'cjnj(r’)Gﬂ r-r'|,u), rev,. (3.3)
Substituting Eq. (3.2) into Eq. (3.3) we find the follow-
ing integral which can be evaluated analytically:

Y!.jsfvjdr’c(lr-r’l,u)R,(v,v’), rev,. (3.4)
The evaluation procedure is classic: Eq. (2.4) is multi-
plied by R,(v,7’), Eq. (2.10) by G(Ir —r’!, p), the re-
sulting equations integrated over V, and subtracted. The
result is
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Y, ,=f,(v, /c,(R,(v,7)8, +fvjdr’V' -[R,(v,7")vG

x(|r=r'|, 1) =G(|r=-r'|, WIVR,(v,7)])
(3.5)

where 0 is t}}e Kronicker delta.

The second term in brackets may be evaluated by
Gauss’s theorem and a representation of G(Ir —r'l, u)
of the form?°

gxlr', WgT (r, 1)
Wig, ', meg.(r', W’

where g_(r, 1) and g,(7, 1) denote the Sturm—Liouville
solutions regular at the origin (or at —« for planar
geometry) and at +«, respectively, and W denotes the
wronskian.

We find

(3.6)

rEv,

G(lr-r|,m)=

v, =£S}%M){Rj(v,r)6,,j (B, (v, g by 1)

-E v, mgr, wl, 3.7)

where
I’V[RJ(V,’V;;),g:F (’Vk, ’J')]
rwlg(r,, w),g.tr,, W)

Here S, , and S, designate the surface areas of the inner
and outer boundaries, »=7,_,, and »=v,, respectively,
of the jth subregion; the top sign is applicable for »>7,,
the bottom for » <7,. Also, for spheres and cylinders
I o(v,u)=0.

Inserting Eqs. (3.7) and (3.8) into Eq. (3.3), we find
F,(r,u)= [ dvA,(W)f, (v, DR, (v,7)

(3.8)

B (v,n)=S

i-1
(3 1 ava, 08,0, 005 0,0 = 3,0, 0 G, 0

N .
23 [av A0, (v, DI, 1) =, 4, )], )
+ [ dvf,(v, WA, (v, Wg,tr, 1) = [ dvf,(v, w)

XA, W (v, w)g (r, u)) . (3.9)
Thus, by comparing Eq. (3.9) with Eq. (3.1), the
bracketed term must necessarily be set to zero. Also,
since g,(r, 1) and g_(r, u) are linearly independent the
coefficients of these functions must independently equal
zero. The resulting expressions yield 2N equations for
the expansion coefficients, A,(v), as i is varied from 1
to N.

The precise equations obtained above using the repli-
cation properties can be derived from a boundary condi-
tion technique analogous to that of Mitsis. Formally, we
can use the definition of the transform function, Eq.
(3.3), to derive the following conditions:

Fr,.y,w)=F, \(r;;, 1), i=2,N, (3.10a)

VF,(v,.1, W)=VF, (r,.,,u), i=2,N, (3.10b)

Folry, IVGlry =7, 1) = Glry =7, LIVF ,(ry, W) =0,
(3.10c)
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where Eq. (3.6) is used to specifically derive Eq.
(3.10c). As in the replication method, Egs. (3.10)
represent equations which can be solved for the expan-
sion coefficients.

The equivalence of the two sets of equations can be
seen by examining successively the coefficients of
g.(r, 1) in Eq. (3.9) beginning with i=N. We find,
first,

[ avsylv, A, (v, 1) =0. (3.11)

By explicitly writing I;(v, 4) from Eq. (3.8) it is easily
seen that Eq. (3.10c) is identical with Eq. (3.11).

Next, letting i=N-1, we find
[ dvfy o, WA (v, 1) = [ dvfy(v, WAL (v, 1)

+ [ dvfy vy WA, (W (v, 1) =0, (3.12)
The first term is zero by Eq. (3.11); the equivalent of
the remainder of Eq. (3.12) can easily be derived from
Eqs. (3.10a) and (3.10b) with { =N by multiplying Eq.
(3.10a) by Vg, (ry.,, 1), Eq. (3.10b) by g.(vy.,, 1), and
subtracting the results. If the process is continued with
the remaining values of 7, the equivalence of the two
sets of equations is readily demonstrated. We find each
new successive equation will contain only two nonzero
terms which can be shown to be equivalent to the bound-
ary conditions Eqs. (3.10a) and (3.10b).

We note that we have used only the replication equa-
tions associated with g, (v, u). However, the equations
associated with g_(r, u) are easily seen to be equivalent
to Eqs. (3.10) using a procedure similar to that de-
scribed above.

Thus the conditions derived from the transform func-
tion definitions are sufficient to determine the expansion
coefficients which will satisfy the necessary replication
equations. In the next section we apply the formalism
presented in this section to determine solutions to the
two-region critical cylinder problem.

IV. THE TWO-REGION CRITICAL CYLINDER

We seek solutions for the particle density in a two-
region infinite cylinder consisting of a central region,
radius R,, with a multplication constant ¢,, surrounded
by a concentric outer region, outside radius R, with
multiplication ¢,. The critical problem assumes no
external sources or particles incident on the outside
boundary. The specific form of Eq. (2.1) applicable to
this geometry may be written

nl(r)=f1%zﬁF1(r, u, (4.1)
where
Fy(r, )=, " dt tn, (DK, (r/ Wt/ 1)
+f Mt tn, (DI, (r/ WKt/ 1) @.2)
+ f:zdttnz(t)lo('r/u)Ko(t/u), r<l0,R,],
ldu
ny(7r) = f u—ze(r, W), 4.3)
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Fylr, )= [ dt tn, (DK (r/ Wt/ 1)

+ fR'ldt tn, (DK, (r/ wIo(t/ 1)

R
+ fR 2dt tny (DI, (r/ WKt/ 1), 7re[R,,R,],
(4.4)
where I,(x) and K,(x) are modified Bessel functions of
zeroth order.
Using the above definitions the transform funections
can be shown to satisfy
2 1 du’ ) .
VEF,(r, u) - ZIEF’(T’ w +c, FF,(T, u) =0, i=1,2.
° 4.5)

The separation of variables technique presented in
Sec. 2 leads to solutions in the form

F1(7’, ® :Axf1(Vo1, “)Io("’/Vo;) + j;ldVAl(V)fl(V, ”)Io(r/")’
IJ-E[O’]']; VE[O’Rl]’ (4.6)
Fyry 1) = £, (oz» WAL/ via) + ByKolr/ve)] + [ dv £y (v, 1)

X [Az(v)lo(’l’/l/) +Bz(V)Ko(’V/V)]a pre [0; 1]; 'r(‘:[Rl ,Rzl-
(4.7
The appropriate conditions derivable from Eqs. (4.2)

and (4.4) which must be satisfied by the transform
functions are

@) F,(0, u) is finite,
1) KR/ ) 222 ) 4 L /R (R, ) =0,

(iii) Fy(R,, u) =F,(R,, ),

.y 8F1(Ry, u)  3F(Ry, W)
@v) a7 - or ’

The choice of the R(v,r) function in Eq. (4.6) insures
that (i) is satisfied. The application of (ii) leads to the
following equation:

Ay fy (Ve s &5 vz u) + foldVAz(V)fz(V, wg (v, 1)
= B, f(vgay Wty gy ) + [ dv B, (v, Wy, 1), (4.8)
where
1 1
0,66, 10 =By (2 KR/ R/ 0) + L B R )

q,(x,x)=1, i=lor2,

and

hy(x, L) =R, (Ko(Rg/I-L

)Kl(Rg/x) _KI(R:/“)KO(Rz/x)) .

X

The standard techniques of Vekua!! are now employed
to explicitly solve for A, and A,(v). We isolate the
singular part of Eq. (4.8) to write
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4,92 (W) + [ dv A0 6P (W =" (W) + F(W),  (4.9)

where the following definitions are employed:

1
&"(1) == 4,62 (1), (vys, #)_%-/0‘ dv VAZ(V)[zl:,Q:(Z’ w)+1]

Fp) = %(Bzfz(voz, Wy (g, 1) + [ dv B0, (v, Wiy (v, 1)),

Q,(v, 1) =£I_LV“%W

((,)=Ci_Yoi
.0 (v) 3 7y~ B

’

6, (= %/V— B X (0)6(y = ).

We recognize the functions ¢ (1) to be those ob~-
tained by case in slab geometry. We choose to utilize
the half-range orthogonality properties'? of these func-
tions to find

Ay =S(vge) + [, L v A, (V)KP (v, V),
A (W) + )] =S0) +j;1dV'A2(V')K(2)(V, v'),

(4.10)
(4.11)

where

K®(,0) =51 f du 6@ (W)@
(4]

(- WW,(W[20'Q, (", ) +1],  n=vgor v,

W) =N}7) f dp 6@ (W[e® (1) + 62 (1)]a, (veg, 1),

Slano® (Wle® (W) + 6@ (Wlga(ve, 1)y 1=v4p
N(m) =

3(02 3 V)

w,(») n=v

W{(“‘) = (Vo‘ - IJ')‘Y;(“')y
YW =c,u/2x,(- w02 - u?), i=lor2,

S(m) =—1\72~1—(mf0 du Wo()F()e® (u).

The functions g(c,,v) and x,(v) are the familiar functions
found in slab geometry applications and have been tab-
ulated by several authors.!®

Equations (4.10) and (4.11) comprise one set of a
“constraint” and Fredholm integral equation pair, com-
mon to critical problems. A second pair may be de-
veloped by applying boundary conditions (iii) and (iv). We
follow a procedure similar to the one employed above to
eliminate A, and A,(v). Now, however, we use the
orthogonality and completeness of the functions f£,(v, 1).®

The application of condition (iii) and the appropriate
orthogonality properties leads to

A, 1 )([Azlo(Rl/Voz) +BZK0(R1/V02)]

T VoM, +1,(R, /v,
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X Z(voys voy) + foldV[Az(V)Io(RMV) +Bz(V)Ko(R1/V)]Z(V, Vo))

4.12)

AI(V) - g(CI; v)

lﬁIo(Rl/V)([AZIO(Rl/VOZ) + BzKo(Rl/Voz)]Z(Voz, v)

+ _f;ldv’[Az(u’)lo(Rl/V’) +B,(v)K,(R,/v)]Z(v", V),
(4.13)
where

V2

N 01
g, Vm)

and
S anfon, w0 = 20,1 = ey =),

(rm’)“;

+P[A M) + n2c comPlo(n - 7).

n? =1
Applying condition (iv) leads to equations similar in
form to Egs. (4.12) and (4.13), isolating the coefficients
A, and A,(v). Thus by a simple subtraction 4, and A, (v)

may be eliminated. We find a constraint equation to be
1
Z(vg25 V01)[A2P1(V01 ’ Voz) + qux(vou Voz)] + fo dv Z(v, Vo1)
X[A, ()P, (vg,, V) + By (v)g, (v, V)] =0, (4.14)

and a singular integral equation
1
Z (s, AP, (v, vgs) + Bygy (v, )] + fo av'z(v',v)

X [Az(V’)Pl(V, V’) +B2(V’)q1 (V’ V')] =O,

where

(4.15)

Pl(ﬂ,ﬂ') =R, <10(R1/ﬂ')11(R1/TI) _Io(Rx/n){1(R1/n')> ,

n n
Pl(n’ 77') =0.

Equation (4.15) can be reduced to a Fredholm equation
by methods similar to those employed by Kuszell!® in the
multiregion slab problem. We write Eq. (4.15) as
B,q, (v, vp) Z (v, v) + foldV’Z(V” B, (v)g,(v,v')=¢"(v),
(4.16)

where

&' (1) == (AP, (1, v52) Z(vpy, v) + j:du Z(v', VA (W)P, (v,v')).

The singular kernel, Z(v',v) is separated into singular
and regular parts using a partial fraction technique to
yield

C2—=C1 1 P
M(v)B,(v) + av' — B,(v')=¢(v), 4.17)
2 o Vi =v
and the following definitions have been employed:

o(v)= (¢'(V) -B,q, (V’ Voz)Z(VOZ’ )/ = = 2_ =

1 ’
x.l(: dv’ 1//’:- v B,(v)[1 +2vQ,(v,v')],
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M) =0 0) +7Pec”.
We recognize Eq. (4.17) as a form analogous to that

obtained by Kuszell.'® Following a similar procedure of
solution we obtain

B0 =[1/ (420 + 2507 3,0

x[1dV')’0(V')T(V,V')¢(V'), (4.18)
(o]

where

=Lc—2-2——cl—) Vl—/"fi—; + M@)oy ~v'),

T(v,v')
and %,(v) is the appropriate half-range weight function
used by Kuszell.

Thus Eqs. (4.18) and (4.11) constitute a pair of
coupled Fredholm equations to be solved for A,(v) and
B,(v) subject to the constraint conditions, Eqs. (4.14)
and (4.10). Because the equations are homogeneous in
expansion coefficients we can arbitrarily set one con-
stant, B, say, equal to —1. Once these equations have
been solved, the coefficients A, and 4,(v) follow
straightforwardly from Eqs. (4.12) and (4.13). Finally,
the particle density in terms of these coefficients is
determined from Eqs. (4.1) and (4.3),

1y () = Ao/ ven) + [, ‘v A, (DI (r/v), (4.19)

10(7) = Aglo(r/ ves) + B/ veg) + [ " v A 0)Lo(o/v)

+ [ av B,0)Ky (/). (4.20)

As with all but the most highly idealized problems
which employ techniques similar to those of case, the
expansion coefficients are solutions to integral equations
involving analytically complex Fredholm or singular
kernels. Numerical procedures have been successful in
solving similar equations, such as the Neumann series
method employed by Mitsis® in solving critical single-
region problems and those of Doctor'® in two-region
spheres. Alternative procedures such as discrete
ordinates and that employed by Bareiss and Neumann?’
to obtain the expansion coefficients from the singular
integral equations would be applicable should the itera-
tive Neumann series technique fail to converge. These
numerical techniques would not be available for the
direct numerical solution of n(r) from Eq. (2.1). In
addition, the transform solution provides considerable
insight into the analytical structure of the solution for
the particle density.

In summary we have demonstrated the equivalence of
the replication and boundary condition transform tech-
niques for multiregion critical problems in one-dimen-
sional planar, cylindrical or spherical geometry. The
specific application to a two-region cylinder presented
herein can be extended in a straightforward manner to
multiregion cylinders, spheres, and slabs. The logical
extension to general multiregion geometries including
nonsymmetric sources and incident particles should
follow from the procedures presented in this analysis.
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Lattice gas with nearest-neighbor interaction in one dimension

with arbitrary statistics
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We define a quantum lattice gas with arbitrary statistics. For a one-dimensional system with
nearest-neighbor interaction, we show that the problem is exactly soluble by use of Bethe’s hypothesis
when the interaction A=+1. The ground state energy is then obtained for the fermions of spin 1/2.

Two phases are found in the case A= —1.

INTRODUCTION

Many years ago, Matsubara and Matsuda' considered
a Bose gas moving on a lattice as a model of critical
phenomena in liquid helium. In the language of Ref. 2,
this model considers a system of bosons interacting
through a potential energy which has two parts. First
there is a hard core to forbid any two particles from
occupying the same site. In addition there is a nearest
neighbor interaction equal to —2A, One further replaces
the usual kinetic energy operator v2 by a double differ -
ence. That is, the potential is

Ve {— 2A for nearest neighbor 1)

© for the hard core,
and the kinetic energy operator is
(x| kinetic energy |yp=~ (x+1| P - (x-1|x) +2(x| .
@)
The model Hamiltonian then becomes

H=2. (- double difference operator)+ 2 V (3)
N.B.
(3) is applicable to system in three, two, or one
dimension.

In this paper, we first define a generalization of (3)
into the case where one could have particles with arbi-
trary statistics instead of Bose statistics alone. This
generalized Hamiltonian is

H=2_(~double difference operator) + 2 V(ILZHQ, (4)

1<
where P,; is the permutation operator. The use of such
permutation operator is well known in nuclear physics
and was fashjonable in the 1930’s. For Bose gas, (4)
reduces to (3) (as P, ;=1 for the totally symmetric wave-
function). Next, we establish that for a one-dimensional
system, (4) is exactly soluble for any statistics by use
of Bethe’s hypothesis when A=11. Subsequently we ob-
tain the ground state energy for the fermions of spin 3

in the limit of an infinite system at fixed densities and
two phases will occur when A=-1.

BETHE’S HYPOTHESIS FOR ONE-DIMENSIONAL
DIMENSIONAL SYSTEM

Yang® has used permutation operators in his solution
of the 6-function interaction problem with arbitrary
statistics. The same method is applicable to the present
problem. We assume that the wavefunction takes the
form in Bethe’s hypothesis:

d’:? [@,P] eXp{i[mem"' “+° +ppy Koy} (5)
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for 0<xg,<*°°<xqy<L. P=[P1,P2---PN]and @
=[@1,@2- - @N] are two permutations of 1,2,,..,N.
By adopting the same notations as in Yang’s paper,®
(3) yields the equation

—_ 4
£°-°U--°— Yf-; ‘E.u.jf...,

where

V3= (9711) + ;1 Pas ®
and
y;i= Alexpip — expiq)/{exp[i(p +¢)]+1 - 24 expig} ("
and the energy is given by

E:—Z?(cosp,—l). (8)

Now it turns out that identities (Y'7), (¥8) hold only for
A=x1, Thus we only deal with these cases in the
following.

SPECIAL CASE OF FERMIONS WITH SPIN %

As in Ref. 3 the special case of fermions with spin 3
is solved through specializing to a particular represen-
tation of the permutation group of the coordinate in-
dices. We discuss cases A=x+1 separately.

Case A=-1
If we make the transformation
o, = 3tan(p,/2) 9)
then
% =—ilo; —a;)? (10)

and the procedure leading to (Y20), (Y21) can be applied
here. Hence for a collection of N fermions with M spin
down, one obtains the algebraic equations

‘o, — A +L
; =nt%=-ihTe 11
exp(zij) 1 iaj"iAz"E ’ (11a)

ia,-iA,+§_H —iA, +id +1 (11b)

- T . T - .
JlOtj—zA,—-z- 1 —1,1\1,+1,Al—1’

where L is the number of sites. By taking p and A to be
real, the logarithms of (11a), (11b) give

pL=21(1, +3)+2 6Q2a -20), (12a)

%79(2A—2a):217JA+>;'4 6(A - A7), (12b)

where 6(x)=2tan™'x and I,, J, are integers (we take

Copyright © 1974 American Institute of Physics 1675



1676 C.K. Lai: Lattice gas

M=o0dd, N='even). In the limit L ,N,M — = proportion-
ally, one obtains

B 4o(A)dA
T4 =20+ f T+a(@—-AF’ (13a)
_f° 4p(a)da _[B 20(N) AN’
2mo(A)= [Q T+a(a-aF ~ J, T+ (A=A (3b)
with
E _ fQ 16a%p(a) da
L 1+4a® ?
(14)
N B
f p(a)doz, T f o(A)dA.
-B
For M/L <1, one could easily obtain (N/L=7)
E 2 . M2 .
i= 27 —-&smmf +—Z <11 sinmy - 2¥ cosmf>+ . (15)

The first two terms are the energy per unit length for
a system with M =0, i.e., fermions with all parallel
spins. The result is expected. On the other hand, the
p’s in (11a) can be complex numbers when L> 1,
That is,

a,= A, +i/2+ Olexp(-KL)], (16)
py=2tan"2aq,, amn

where we take real part of p; in the quadrant (r/2,7) and
(= 7/2,- 7). Then similar to the §-function interaction
model in the attractive case,? one obtains the integral
equations

s 5 o(v)
T+ A2 ‘z”o(A)“L,/:B T ™
e 47()
+_/:Q m d’}", (18a)
4 B 4o(n)
m_ZWT(Y)+[B 1_+4(TA—)2dA (18b)

with

o o aan [Trar, Y[
f_ odA + Tdy, 7)., odA, (19)

E B 3+4A2 @
L_zzL aray 0(A)dA+fQ

For M/L <1, one easily obtains

169%

1+42 Tdy.

E/L =2~ @2/%)sinnr + (M/L) @/7)sinnr
-2{r-2)cosmr +2]+--- (20)

(20) indicates that, at high density, pairing of spin up
and spin down particles gives lower erergy than non-
pairing as in (15). Therefore, one expects that, at cer-
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tain density, two phases coexist: one phase defined as
collections of fermions with no pairing and the other de-
fined as with pairing. Details will be published
elsewhere.

Case A=+1
If we make the transformation
a=1%cot{p/2) 21)
so that
x;=ila; —a)™, (22)

then again we can apply the same procedure as case
A=-1, But now complex solution of the forms (16) will
give the lowest energy. The integral equations will be

2 _anea)+ f 20) s
1+ A2 s 1+ (A-A'P

47(y)
+ f T 22a)
4 f 40(A)
1+4y T3a7 =210 + ;1 1+4(y-A) dh (23b)
with
N_ [ rays zf odA, —=/ odA, (24)
Q1 (B (B1
and
E 4 2
£= J e v f v oo @)

where [@] indicates the integration range is [- «, - Q]
and [Q, «].

REMARKS

One can also obtain the scattering S matrix and the
thermodynamics of particles with higher spins, The
problem of mixture of fermions and bosons can also
be exactly solved. Details will be published elsewhere.
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A conjecture that the (n —1)* independent moduli and (2n —1) unphysical phases completely specify
all n-dimensional unitary matrices is shown to be true in two and three dimensions, but false in
four or more. The implications for quantum theory are discussed.

INTRODUCTION

Finite-dimensional unitary matrices arise in both the
nonrelativistic and relativistic quantum theories as ar-
rays of transformation coefficients between distinet
orthonormal sets of state-vectors (bases). But {since
the phase of a basis vector is of no physical signifi-
cance) not all of the phases of a unitary transformation
matrix may have physical significance. In particular,
arbitrary diagonal unitary matrices D, and D, may be
used as pre- and post-factors, respectively, in

U'=D,UD, 1)

to produce a unitary matrix U’ with precisely the same
physical meaning as the original matrix, U.

Observe that a constant unimodular matrix may be
extracted from both D, and D,, and that it commutes
with all matrices. Thus Eq. (1) demonstrates that within
the n?-dimensional continuum of »X»n unitary matrices
there are, in general, (2n —1)-dimensional subsets of
physically equivalent unitary matrices. Furthermore,
interpreting the matrix U alternately as an array of
normalized column and row vectors, it is clear that
there are only (n —1)? independent moduli of the matrix
elements, But, since (n—1)>+ (2n ~1) =#2, the indepen-
dent moduli would seem to complement the physically
redundant diagonal factors in providing a parametriza-
tion of the entire group U(x). There is, in fact, a recent
conjecture’ that the set of independent moduli of matrix
elements completely specifies the physically distinct
subset {U'} generated in Eq. (1) when D, and D, run the
entire gamut of diagonal unitary matrices.?

The theoretical significance of the conjecture is con-
nected with this fact: The absolute value of any matrix
element may be measured by ascertaining the transition
probability from a single basis state in the initial basis
to one in the final basis. In general, this may easily be
made operational, since the experimenter must be
capable of preparing and detecting systems in their basis
states in order to define those states. The determination
of the phase of a matrix element, however, requires the
formation of a linear superposition of at least two basis
states. Moreover, the disproof of the conjecture allows
the situation that all the moduli of a transformation
matrix may be measured, without removing all ambigu-
ity in the matrix. This might introduce a new class of
ambiguities in the experimental determination of scatter-
ing matrices, for example.?

After some technical preliminary discussion, we will
proceed to prove the conjecture in two and three dimen-
sions, and to demonstrate its failure in four (and
hence in all higher) dimensions. The disproof proceeds
by displaying a large class of counterexamples.
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TECHNICAL PRELIMINARIES

Let us agree to use a “standard representative” of
the double coset U’ defined by Eq. (1). The previously
mentioned constant unimodular matrix may be chosen to
render the first entry of D, equal to 1. The phases of D,
and D, may then be chosen so that the first row and
first column of U’ are made to be real and positive. For
each U, there will be a corresponding standard repre-
sentative U’,

exp(—ie,) 0 eee 0

0 expl=ig,)eer 0

U= : :
Qeoe exp(_iq§")

(2

1 0«0
0 exp(-i6,)-++ 0
0

oo exp(-i6,)

where ¢,, ,. .., are the phases of the first column of
Uand 6,,6,...0, are the phases of the 2nd through nth
elements of the first row of U. We will call such a
standard U’ a “real-bordered” unitary matrix.*

In terms of the real-bordered matrix just introduced,
the conjecture reduces to the following: that the »?
moduli of the real-bordered matrix specifies the matrix
completely. Thus, a counterexample is provided by
finding any two real-bordered unitary matrices whose
moduli are equal (position for position), but whose
phases differ. Now it is clear that any real-bordered
matrix with complex entries will provide a counter-
example to the conjecture, for the operation of complex
conjugation would convert such a matrix to a different
one, which nevertheless had equal moduli. But these
two matrices must represent physically equivalent
situations for it is precisely the complex conjugation
which is necessary in quantum theory to implement the
symmetry of time reversal.® Again, if the real-bordered
matrix has two rows (or columns) whose corresponding
entries have the same absolute value, then permutation
of the rows (or columns) will provide another form of
discrete counterexample. But these two matrices would
differ merely by a labeling of the states; moreover, we
would like to search for a wider class of counterexam-
ples—one which demonstrates the impossibility of the
parametrization hypothesized in the conjecture by ex-
hibiting a continuum of standard real-bordered unitary
matrices, all having the same moduli. We therefore
exclude from our search all isolated discrete
counterexamples.®
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PROOF OF THE CONJECTURE IN TWO AND THREE
DIMENSIONS

For two-by-two matrices, the proof is trivial, since
8
U= exp(ial) exp (— i% 62) exp (— iy ov) exp (— i%o‘) (3)

is a unique decomposition, and the y rotation is a real
matrix, (Here the ¢, are Pauli spin matrices, and I is
the identity matrix,) Clearly this leads to a real-
bordered matrix determined by the factor exp[—i(8/
2)oy], whose phases are completely specified by the
moduli,

For three-by-three matrices, the argument can be
made on geometric grounds, as follows:

X, X, X
U=| Y, Ae!* Ce'?] is unitary only if
Y, Be'* De'

XX, +Y,Ae'* + Y, Bet =0
X, X,+Y,Cel”+Y Det®=0 ) . @
X, Y, +X,Ae!* +X,Ce?" =0

Each of these equations is a #iangle on the complex
plane with specified lengths, and whose orientation is
fixed by having one real leg. Each therefore has only two
solutions. For example, the first of Eqs. (4) can be
solved for @ and B in two ways, as shown in Fig. 1,

Thus a =0, and B=71+B,0or a=-ayand B=7—-§,.
These two solutions are related by complex conjugation.
If the only degeneracy of solution were simultaneous
complex conjugation of all phases, we would have the
physically equivalent case discussed above.

This is indeed true of the three Eqs. (4); furthermore,
the presence of zeroes in the matrix does not alter this
conclusion, so the conjecture is proven in three
dimensions.

THE COUNTEREXAMPLES

In four dimensions, the following matrix provides a
wide class of counterexamples to the conjectured
theorem. For every positive definite <1, the matrix

A B cVi=g CVa
D E W1-a FVa
U=
GVi-=a HT-a ae* —-Vall-a) ¢t
GVa Ha ~ValT-d}e?® (1-a)e®®
(5)
will be a real-bordered unitary matrix as long as
A B C
U;={ D E F (6)
G H 0

is a real-bordered unitary matrix (which implies all
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FIG. 1. The geometric solutions to Eq. (4).

entries are real, F and H are negative). Notice that the
family of U,(#8), as 8 varies from 0 to 27, is a continu-
ous infinity of matrices whose corresponding moduli are
always equal, but whose phases are quite different.
Note that the counterexamples arise when U, is pro-
jected into four dimensions in such a way that an ortho-
gonal dyadic may be added to it without altering any of
the moduli. Clearly this procedure provides counterex-
amples in all higher dimensions as well.

It is not known if this is the most general counter-
example possible in four dimensions. Since the
presence of a zero in U, leaves it with only two indepen-
dent moduli, the real-bordered U, has only four con-
tinuous parameters (i.e., the two of U, plus a and 6)
instead of nine. Thus it would seem that a much larger
class of counterexamples probably exists. It is likely,
therefore, that the practical impossibility of operation-
alizing unrestricted superposition will lead to real-life
examples of the phase indeterminacy adduced above.”
Finally, the answer to the eponymous question is yes,
at least for transformation matrices.

The author would like to thank Dr. J. Pietenpol for a
helpful discussion which led to a particular counter- '
example, and Mr, J. Dell for stimulating and helping a
return to this work. Special thanks are due to Professor
R. Dashen for originally suggesting the problem.

IR, F. Dashen, private communication. The conjecture is due
to Dashen and Y. Aharonov.

2A mathematician might more precisely state the conjecture:
“that the double coset decomposition of the unitary group with
respect to its diagonal subgroup is separated by the moduli of
the matrix elements.” .

3See N.W. Dean and Ping Lee, Phys. Rev. D 5, 2741 (1972)
and references therein. The current investigation may also
bear upon the work of Moravesik, Phys. Rev. D 5, 836 (1972)
and its references.
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“The special case where zeroes occur in the first row or
column allows further specification of the “standard represen-
tative, ” but this is an inessential complication which in no way
affects the general conclusions of this paper.

5See, for example, E.P. Wigner, Group Theory (Academic,
New York, 1959), Chap. 26.
fWe would restate the quotation in footnote 2 above: “that the
double coset decomposition of the unitary group with respect to
its diagonal subgroup is separated (up to discrete isomor-
phisms induced by either complex conjugation or by permuta-
tions) by the moduli of the matrix elements. ”

"An interesting example of the practical limitations on super-
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position occurs in the case of isotopic spin. It is clear that the
physicist can prepare a state of, say one K° and one proton.
Through approximate conservation of isotopic spin he might
produce, in the same system, the state of total isospin 1,
with charge 1 (I=1, I,=0). But it is difficult to conceive of a
controllable method of producing or detecting most of the
linear combinations of states in a 1Kaon—1Nucleon system.
Since the transformation matrices (in isospin space) are in-
deed four-dimensional in this case, the discussion above may
be directly applicable. A similar remark may be made with
respect to the N system, where the role of isotopic spin
states might be played by the A quartet.
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We apply the results of a previous paper by Screaton and Truman to the truncated vacuum
expectation values in Wightman field theory and, using spectrality, translational invariance, and
Lorentz invariance, we derive the best bounds for the truncated vacuum expectation values at the
real Jost points. In a local field theory these bounds include as a special case Araki’s result on the
exponential decrease of the truncated vacuum expectation value for large spacelike separations and
the cluster decomposition property. The bounds also establish a connection between the small
distance and high energy behaviors of the theory. In addition we evaluate the bounds in a nonlocal

field theory and discuss some of their ramifications.

1. INTRODUCTION

In a previous paper' Screaton and Truman derived
general holomorphy properties and bounds for the
Fourier transforms of distributions with restricted sup-
port. In the context of a Wightman field theory, using
spectrality, Lorentz invariance, and translation in-
variance, we here apply these bounds to the truncated
vacuum expectation values of the products of a scalar
field ¢.

After Haag? the truncated vacuum expectation values,
W7, are inductively defined by

Wity ..., %,)

= WT(x,l.l,x,I'z, v Xy, 1) W"(x,z'l, RRPE A 7)o

XWHxy 15 e e %1576, 1

where W(x,,...,x,) is the vacuum expectation value of
the product of field operators (Wightman® function):

W(xg, ..oy %) =(0] d(xp) - d(x)|0), Wes', (2)

|0) is the vacuum state and the sum on the right-hand
side of (1) runs over all partitions of 0,1,...,% and in
each subset [,,1,...,1,, 7, indices are taken in natural
order.

In a translation invariant theory there is a unitary
representation 7(a) of the translation group {a:acR%.

T(a)=exp(iP- a)= [ exp(ip- a)de(p), T(a)Pp(x)T(-a)

= ¢(x +a),
T(a)|0)= |0), (3

where Pis the self-adjoint energy—momentum operator
and €(p) is the corresponding spectral measure. It fol-
lows that the truncated vacuum expectation values are
translation invariant and are distributions

WT(E,, £p, ..., E)€ § in the difference variables
Ep=Xp= Xy,

If also there is a lowest positive mass, m, particle so
that the spectrum of P is {0}UV,™, where V,™
={p:p*=m?, p,> 0}, then the inverse Fourier trans-
form of WT, WT(q,,...,q,) € §’, has support contained
invV.,"e"

The results of Screaton and Truman can easily be gen-
eralized to yield Theorem 1.
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Theorem 1: Let K be a closed subset of R* and let
Fourier transform be defined as in Footnote 4. K
={n:q-n>a(n)>-, ¥ gcK}, KcR* where the dot
denotes Minkowski scalar product, [z]=1and | | de-~
notes Euclidean norm. If F(ql, ...,g,)€ ¢’ has support

K@", then the Fourier transform of F, F(§,,...,%,)is
holomorphic in the tube R*"+iK " If further
E,=Ret,+i|Imt,|n, j=1,2,...,n,n,¢k,
|F(es, .. os g0 | <C T (Jme, [+ 1)(J g, |7 +1)
xexp[~ |1me, | a(n,)], ()

for some nonnegative integers 7, and s;, j=1,2,...,n,
and some constant C.

If in the above theorem we identify K with V™ K with
t,)
) Sn

V., and F withW7, we arrive at bounds for W7(¢,, ...
in the forward tube

T,T={(&,...,£,):Im¢, eV ,i=1,2,...,n}

If in addition the theory is invariant under the proper
orthochronous Lorentz group, L, so that there is a
unitary representation U(A), A< L], with

U(A)p(x) U™ (A) = ¢(Ax), U(A)|0)=|0), (5)

then, by using the Bargmann—Hall—Wightman® theorem,
the bounds in the forward tube can be extended to the
real Jost® points

J:{(Ep ceey E,,) : (Exigi)2< 0’ EK; = 1: )\i = 0]{
By considering a certain Hermitian Lorentz trans-
formation we simplify the bounds above for W7(z,, ..., £,),
(Eys ..., E,)ed. At an equal time Jost point (£,,...,¢,),

£9=0, i=1,2,...,n, the simplified formula enables us
to evaluate the bounds explicitly. In a local field theory,
where ¢(x) and ¢(y) commute for spacelike (x—y), these
bounds include, as a special case, Araki’s’ result on
the exponential decrease of the truncated vacuum ex-
pectation values for large spacelike separations. This
leads to the usual cluster decomposition property® in a
local field theory, equivalent to the statistical indepen-
dence of widely separated experiments. In a local field
theory our results also give a relationship between the
small distance and high energy behaviors of the theory—
the small distance behavior of the vacuum expectation
value in 7,;= |X,; -~ X,| is related to the polynomial growth
of the inverse Fourier transform in the momentum vari-
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able conjugate to (x; ~x,). In a nonlocal field theory we
obtain new bounds for the truncated vacuum expectation
values. The new bounds lead to a restricted cluster de-
composition property and a similar small distance
property. The new bounds may be a useful tool in ex-
tending Haag—Ruelle collision theory® to nonlocal fields.

2. THE SUPPORT PROPERTY OF THE TRUNCATED
VACUUM EXPECTATION VALUE

The truncated vacuum expectation values are defined
recursively by Eq. (1). From translation invariance

WT(xoy"'axm)-:WT(Ep' -’Em)s Ek:xk_xk-l- (6)
In this section we establish the support property of
W¥q,, ..., 4;.), the inverse Fourier transform of
WT(Ey, ..y 852), suppWT(g,,...,4,.,)C V,"®"?, where
WT(‘Ep ey ‘Ex-l)
= f exp(igl"ql Foeet i&z-l " q;-l)ﬁ,r(qp cvey q;-l)dql b dqz-l,

(7

V,"={q:q*=m?, q,>0}. We prove this result to be a
direct consequence of the spectrum S of the energy—
momentum operator P being given by S={0 v,

Let X(a) be a function such that supp.;( NS={0}. We

shall prove by induction on ! that
fX(a)WT(xo, ey Xpgs Xy T A, .., Xt a) d4a=0,

(8)

or
f X(qk)exp(iﬁl' gy teer + ig;-; : q,-;)
x ﬁ/T(q“ ey q1-1)dq1"' dqt-1=0' (9)

Since the above equation holds for all ¢ it is equivalent
to the support of W7(q,, ..., q,.,) being contained in

V.re i
First of all when I =2 we have that
f X(a)WT(x,, x, + a)d'a
= [ X(a)W(x,, x, + a)d'a - [X(@W(x)W(x, +a)d"a,
(10)
fX(a)WT(xo, x,+ a)d'a
= (%) [ X(@)T(a)d"a ¢(%, o = ($(x))o{$(x o (0.
(11)

However, since T(a)=exp(iP- a)= [ exp(ip- a)de(p), we
have

[ X(a)T(a)d a=X(P). (12)
Hence from the support property of X we arrive at
[ x(a)T(a)d"a =%(0)|0)0], (13)

where 10)(0] is the projection onto the vacuum. Hence,
JX(@WT(x,, x, + a)d’a=0. (14)

To establish the result inductively, we observe that

S X@W(%yy oy %pgy %t 0y,
= (Hx)P(x))  (x,y) [ T(@X(a)d ad(x,) - d(x,No
=XOYW(xy, . . o, %y )W(Xpy - . - (15)

4
X, +a)d a

) X,
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We now assume Eq. (8) holds for I <m + 1. Substitute
from (1) for the lhs of (15). By the inductive assumption,
apart from [X{(a)W7(xy,...,%,+a,..., %, +a)d*a, any
term from the rhs of (1) which includes W7 evaluated at
arguments involving x’s from both (x,, ..., x,,) and

(%4> -+ - » X,,) is zZero. For instance, if {xal, s %
U ey e e s ® = {%0, oo s Xyt and {xy , .

Uy oo g b= (X o oo X}y m+1=7+s+1+u,
a,a,..a, etc. in natural order,

f = fX(a)WT(xal, -
X WT(xcl, N A %, + a)da,
o= [X@WT(E, ... et a,. B
XWT(E oo Erposr T Gy oo ny £ ),
where £ =x, -x, etc.,
DN IS D CET 730NN | [t A A
XWT (W e e v s Dyupugers = =3 Ppes)

m=-1
Xexp(i ,Zl; g’,-p;)dp'.

"y Xy,

,xar,xb1+a,...,xbt+a)

Xty (16)

(17)
’p'n:-l)

(18)

+ e t*s-l) [S2 V?m by in-
ductive hypothesis [=0. Hence the only terms giving a
nonvanishing contribution to the lhs of (15) are

fX(a)WT(xo, ey Xyt Ay, X, +a)da + X(0)

Since pLe V.™, P, ... E V.= (P, + D!

22 WI (YWI () WE (), (19)
part 1 2 s

where part’ indicates a summation over all subpartitions
of the partition (0,1,...,k-1)k,...,m). However, ac-
cording to Eq. (1), this last term can be written as
X(0)W(x,, ..., X,  JW(X,, .. ., %,) and

[ X(@WT(x,, . .

The result is true by induction.

Xyt Ay, X, a)da=0. (20)

3. BOUNDS FROM SPECTRALITY

We have seen from spectrality that ﬁ”(e»g‘ '), the in-
verse Fourier transform of the truncated vacuum ex-

pectation value, is such that supp ﬁ’T(ql, ceesgd)C VTR
From Theorem 1 we can deduce that W7(¢],...,£') is
holomorphic in the forward tube T, T={(%,,..., £)): Im¥,
ev,,i=1,2,...,n}. Moreover, for (£,...,&)e 7,

WI(Ey, + o, D[ <CTL (14 [Imgg [0+ [g]70)

xexpl- |Im&; | a(n,)], (21)

where &;=Re(£})+iIm(t)), Im&,= |Im&)|n,, In,| =1,j

=1,2,...,n, (| | denotes Euclidean norm) and a(x,) is
such that suppWZ(q,,...,q.)c{(qy, ..., a,):q; 7,2 a(n,), j
=1,2, ...,n}.

Since supp W'(q,,...,q,)C {4y, .., q,):q5 2 m? ¢3>0,
i=1,2,...,n} and the equation of the tangent plane to
@ =m® at Q (Q@*=m?) is q- Q =m?, we have a(Q/1Q])
=m?/1Q|. Putting @/1Q | =Im¢,/|Im¢;| and using @*
=m? gives |Im&,;| a(n;})=m(Im&, - Im&;)*/2, Hence, for

(£ .. e T,
(W&, .o, g [<C (1 [y " 1+ ||

X exp[- m(Im¢& - Im&))!/2]. (22)
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Thus, for m >0, WT is exponentially decreasing in the
forward tube 7.

The truncated vacuum expectation values are also
Lorentz invariant:

WiEy, ..., E)=WT(AL,..., AE), AcL]. (23)

The Bargmann—Hall—-Wightman theorem implies that
WT(k,, ..., £,) is holomorphic in the extended tube 77, 7’
=U,{(A7), where the union is taken over A € L,(C),

the identity component of the complex Lorentz group.
The value of WT(&,, ..., £,) at points of 7’ is given by

WT(Ey, ..., E)=WT(AL,, ..., AE), A€ L,(C), (24)
where (&, ..., &8)=(AL,,...,Af))e 7. In particular
WT(g,, ..., £,) is holomorphic at the real Jost points
J= {(‘Ep seey 5,,) (2 )\,"E{)z < 0, 2)\"—‘ 1, X( 20}. For
(§y) ..., E)EJ,

[WT(E,, ..., £)|<C inf }"11(1+ [tmg, |1+ | &™)

X exp[—m(Im&; - Img;)t/2], (25)
where the infimum is taken over (&,..., &)

:(AEU L) A‘E,,)E 7, A €L+(C)-

From Eq. (25) we see that, for large £ J,
WI(t,, ..., t,) is essentially bounded by exp[— md(£)],
where d(£) is given by

d(£)=sup ‘Z:z (ImAE, - ImAgi)l/z’ (26)

the supremum being taken over Ac L, (C), ImAE, €V,
i=1,2,...,n. We call d(¢) the diameter of the Jost
point. [Araki derived the same exponential bound in-
dependently when evaluating W7(xt,,...,)£,) at the equal
time dilated Jost point (A&, ... ,2&). ]

From equation (25) we also see that, for small £ < J,
WT(t,, ..., ) is essentially bounded by

C(t)= ‘nl (1+(ImA¢,- ImAE,)*?), AcL,C),

(Aby,...,AE)eT.  (27)

In the next section by considering a certain Hermitian
Lorentz transformation we find a simplified formula for
d(£) and the above bound. In a local field theory this
leads to bounds for the behavior of WT(x,, ... , %) for
both large and small separations. For large separations
we rediscover Araki’s result—the exponential decrease
of the truncated vacuum expectation value, while for
small separations we see the value of the truncated
vacuum expectation value is determined by the high
energy behavior of the theory. In nonlocal field theories
our results lead to new bounds for the truncated vacuum
expectation values.

4. EVALUATION OF THE BOUND

Lemma 1: When A € L (C), the identity component of
the complex Lorentz group, the Hermitian matrix
H=ATGA is a Lorentz transformation with eigenvalues
+1, =1, kand k', <0. (G is the matrix of the
Minkowski inner product.) To see that H is a Lorentz
transformation, we write

HTGH=ATGAGATGA=ATGAR "A=ATGA=G, (28)
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where we have used ATGA=G, or A™'=GATG, so that
A 1=GATG.

Since A€ L (C), detH =det(ATGA)=~1. We now con-
sider the eigenvalue equation det (H - 1)=0. Because H
is Hermitian, this equation will have real roots A, Two
of these roots are A=+1. This follows from (28) and
det H=-1. For we have

det(H + 1) = det(H + G*) =det(H + GHTGH)
=det(1 + GHTG)detH = - det(1 + HT)
= —det(1 + H). (29)
~.det(H +1)=0. (30)
Similarly det(H —1)=0.

As H is Hermitian, detH =- 1, the eigenvalues of H
must be +1, —1, k and ™!, where % is real, k0. In
fact, k<0, as we now show. Consider tr(H)=tr(ATGA)
=k+Fk!, For real b, k+0, tr(H)>2 or tr(H) <-2, ac-
cording as £ >0 or £<0, respectively. Also, tr(H)
=tr(AtGA) is a continuous function of A €L (C). How-
ever, L (C) is connected and, when A=1e L (C), tr(H)
=~ 2, therefore, tr(H)<-2, A€ L,(C). Hence, £<0.

Lemma 2: When A e L (C), 3 lightlike vectors I, and
1_ (depending only on A) with l, 9V, I,-1_=~2, such
that for all real 4-vectors £ with ImAfeV,

ImAE- ImAE <(&-1)(E-1). (31)
Elementary computation yields
ImAg- ImAE=3(ETHE - £2). (32)
Two cases arise: k, &' distinct and k=k'=-1.

Case 1: k, k™ distinct: In this case all the eigenvalues
of H are distinct. The spectral resolution of H then gives

3
1= x5, (33)
[4]
k]
H= 2 x,x", (34)
0
where x,,, m=0,1,2,3 are the eigenvectors of H:
Hx,=x,x,, m=0,1,2,3, (35)
=1, M==1, \,=k, =k, with
xx,=4,, m,n=0,1,23. (36)

As H is a Hermitian Lorentz transformation,
H=H"=GH"G. (37
It follows that we can choose x,, so that, in addition,
%= GXy,

%,=-G%,, x,=-G%,. (38)

For instance,
Hxy= xg=Hxy= x4 GH'Gx, = x;=H(Gx,) = Gx,, (39)

and similarly H(GX,) = - G%,, H(Gx,)=k"'Gx,. (38) fol-

lows by suitably adjusting the phases of x,,. When we

take (36) in conjunction with (38), we arrive at
Xg=—X[= =%y Kg=1,

x§=x§=xo- Xy =X Xy =Xge Kz =Xp0 Xy =X%;° %, =0.
(40)
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From (33) and (38)
E=(E« X0y — (E* %)%, = (E+ x5)2, = (£ %)%,
SER= (8 xF = (B0 2, P = 2(E - %)(E - Xy).
Similarly from (34) and (38) with 2= - 4® (real a > 0)
ETHE= |t~ x,|2- £ %, |2 - @®| £ %, |2 —a®|E0 x, ]2

(41)
(42)

We now write x,, =7, +ij,, where r_ and j,, are real,
m=0,1,2,3. Using Eqgs. (32), (42) and (43), we finally
arrive at

ImAE- ImAE= (£ jo)2 = (k- ;) = 3lalg- rs) ~a (& 7)) P
- Ha(t- j)+a (5 ). (44)

The vectors (v, +1ij,) and (7, + ij,) are lightlike,
r2-j,?=0, 7, j,=0, etc. Hence, if 7,,5,#0, the pair
of vectors 7,, j, must be spacelike. Choose the Lorentz
frame in which %, =(0,0, 7,,0), j,=(0,0,0,j,). As
(73 + ijs) == G('rz - ijz)a 3= (0,0, Y2 0): j3 =(0,0,0, _jz)-
Then, since (v, +ij,) = G(7, ~ij,), 7, is pure timelike and
of necessity j,- 7, =j,* jo=Jjo* 7o=0. Hence, in this
Lorentz frame x,=(7,,%j,, 0,0). Similarly in this Lorentz
frame x, =(ij,, ;,0,0). In addition x,- x, =0, so that
Yoj1=Jo7,. However, x2=-x;=1; therefore, j,==j,,
#2 <1. Finally then, referring back to (44), for ImAtc V,,

ImAE« ImAE <(§- jo)? - (£ 5, =733 - £)) <} - &2,
(45)
Hence,
ImAE- ImAE <(E-1)(E- 1),

where in our Lorentz frame !,=(1,1,0,0), I,
=(-1,1,0,0), [,-l.==2,1,€dV,.

The above argument is only valid when 7,, j,#0. When
j,=0, say, we have j,=0 and v,°=7.2=0. Since 7, and
j, are pure timelike and 7, 7, =34, ¥,=0, we must have
v,=4,=0. Hence, choosing a Lorentz frame in which the
space-like j, and 7, are given by j,=(0,0,1,0) and 7,
=(0,0,0, 1) and satisfying 7, v,=-1, 7,=— Gr,, one
possibility is 7,=2"1/%(+ 1, £+1,0,0) and 7,
=2"1/2(—1, £1,0,0). Thus, we see that

l,=jo+2%ar,—a'r)=(x(a+a")/2,

t{a~at)/2,1,0)cdV, (46)
and [, +I_=-2. Moreover, from Eq. (44)
ImAE-ImAE=(E- L)(E- L) <(E- 1 )E-1). (47)

The only remaining possibility »,=2"/2(-1,+1,0,0),
7,=2"1/2 (1, +1,0,0) can be dealt with similarly.

The case 7, =0 can also be handled as above.

Case 2: k=k™=-1: As x,=Gx,, we can choose a
Lorentz frame in which x,= (7, #j, 0, 0). We now choose
the three vectors x,, x,, and x,; to span the orthogonal
complement of {x,}. We put x, = (ij,, 75, 0, 0), x,
=(0,0,1,0), x,=(0,0,0,1). Then x,,* x,=G,,, 7a+2=1,
and x,=Gx,, x,=-Gx,, x,=G%,. Arguing as in Case 1,
we find

ImAE- ImAE=(E- o) — (£ §,P =£2 - £2,

The result follows.

(48)
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We can now prove the following theorems.

Theorem 2: A necessary and sufficient condition for
(&1, &5y -+ +» £,) to be a Jost point is that 31, €9V, 1 -1
=-2, such that £,-1,>0, £;-1.>0, i=1,2,...,n

The condition is necessary for if (§,,...,£,) is a Jost
point 3AcL (C) with ImAE, eV, i=1,2,...,n How-
ever, V, is convex; from Lemma 2 then 3/, €0V, [ -1
=—2, such that

0<ImAE-ImAE <(t-1)E- 1), (49)

VEcH(E,. .., £,), where H(E, ..., &) is the convex

hull of (&,,...,¢,). Hence, (£-1,) and (£ 1)) are nonzero
and have the same sign V£ €H(%,, ..., £,). Thus, either
£,-1,>0, £-1.>0, i=1,2,...,n, or £,-1,<0, £,-1.<0,
i=1,2,...,n. In the first case there is nothing further
to prove and in the second case —I_and -, can be
taken as I, and I_, respectively.

To see the condition is sufficient, choose the Lorentz
frame in which I, =(1,1,0,0), I_=(-1,1,0,0). Then
£E,—£,>0, £,+£,<0. Consider the complex Lorentz
transformation A: (£, £,, &, £5) = (~ i, i, £5, £;). Then
AeL,(C)and ImAE,=(-£},£9,0,0)eV,,i=1,2,...,n.
Hence, (&,,...,%,) is a Jost point, proving sufficiency.

[Note that ImAE; - ImAE, = (&, 1) (§;-1.).]

It is not difficult to prove that the above condition for

(&), ..., ¢,) to be a Jost point is equivalent to the usual
condition:
(Z})\igi)2<0, )\{20; Z,‘)\‘r:l.
Theovem 3: Here we show that if
n

d'(E)=SupiL: (&= 2,) (B 12, (50)
where the supremum is taken over 7, edV,, I,+1.=-2,
with £,-1,>0, :=1,2,...,n, then

d’(£)=d(&). (51)

Theorem 1 ensures d’(£)>0. From Lemma 2 evident-
ly d(§) <d’(&).

Also, from the second part of Theorem 2, for all
Leav, 1,-1.==2, £,-1,>0, i=1,2,...,n, IA€L,(C)
with ImAE, e V,, ImAE, - ImAE, =(E,- 1 )E;- 1),
i=1,2,...,n. Therefore, d’(t) <d(t). Hence, as
asserted, d’(t)=d(&).

Evidently it is important to identify which points
I, €0V, give rise to the supremum. A partial answer to
this question is provided by the next theorem.

Theovem 4: If the Jost point (£,,...,£,) lies in the
hyperplane £°=0 so that £,=(0,&,), i=1,2,...,n, and
=37, £,, then

d(£)=sup(m- Z), (52)

where the supremum is taken over m c M,
M={m:m-§{>0, i=1,2,...,n m?>=1}

First of all we remove the artificial restriction 7 - 1_
=~ 2 in the definition of d’(t). We write I =pm_, !
=om._, p,0>0. Then po=-2/(m,+ m_). Hence,

n . . 1/2
()= sup 5 (_ 208, -m )&, m-)) ’ (53)

=1 m, -m_

-
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where the supremum is taken over m, < dV,, m, - m_<0,
with m, - £,>0, i=1,2,...,n. We can now normalize m,
and m_ so that m, =(1,m,), m_=(-1,m_). Writing
£,=(0, &), then

2 - m, )& m-))”{

a=sw 3 ( A (54)

Introducing the unit vector m
==2%%1+m,.- m)*?m,+m) and the vector
n=2"%1+m,- m)*/?(m, - m_), we have

n

d(§)=sup 2 [(&, - m)? - (&, -n)}/?, (55)

m-£,>0, i=1,..
have

d(£)=sup(m- ¥), (56)

where the supremum is taken over m e M,
M={m:m-£,>0, i=1,...,n; m*=1}.

.,n, m®=1, Hence, putting n=0, we

We call the direction of m giving rise to the above
supremum the Jost point diameter.

5. SOME RESULTS IN A LOCAL FIELD THEORY

We first show how Araki’s very elegant result can be
derived as a special case of Theorem 4. The reasoning
is similar in the first part to that used by Araki.

Araki’s result
If the point (P™'x,, P7'x,, ..., P'x,) satisfies (P 'x,)°
=(P,;,)’ i=0,1,...,n—1, the Px, can be permuted
so that (£,,&,,...,¢), £E,=x,—x,, is a Jost point and
d(E)=S‘ujp |x; -x,| =R. (57)
R is called the diameter of the set of points {xo, ey x,,}.

Let R= |P7x,- P'x,|. Put x,=P'x, and x,= P'x,.
Choose the 1 axis parallel to (x,—x,) and the 2 and 3
axes any two perpendicular axes at right angles to
(x,—-X,). We now permute the P™'x, so that

(x{)l > (x‘_l)l’

or (x,)'=(x,), (%> (x,..)% (58)

(=%, (%) >(x,,)

Clearly the vector 1=(1,0,0) is such that 1. £,>0, ¢
=1,2,...,n. As the function £,- m is a continuous func-
tion of m, for sufficiently small ¢, ¢’ >0, the vector m
=((1-€e—¢?)'2,¢,¢’) satisfies £, m>0, &, =x,-X,_,,
and (£,,..., &) is, therefore, a Jost point. Moreover,

or (x,}=(x,,),

T -m=(x,~X) m=(1-€e-¢’2)!/?R, (59)

From Theorem 4 then d(¢)=R, establishing the result.

Cluster decomposition property
In a local field theory we can now deduce a general
bound for W7(x,,...,x,), ¥3=x]=++ =x>. Referring
back to Eq. (25) and permuting the x’s by locality, we
see that if xj=x3=-.c =« and x, #x,, i#j, then
| W (ko - . ., %,)| < C(O)P(R) exp(~ mR), (60)

where R is the diameter of the set of points {x,,...,X,},
P is a fixed polynomial and C(8) can be regarded as a
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constant depending upon the angles between (x, - x,) and
the diameter of {x,,...,x,} for large separations.

We then have, x,#x,,
.3 %) —0, (61)

as R —, for all m’ <m. It is now a simple matter to
use Eq. (1) to derive the cluster decomposition
property, for all m’ <wm:

exp(m’R)WT(x,, ..

exp(m’ |a|) {W(xgy oo, Xpys X, + @y .
~ WXy e ooy Xp YW(Xp 0w, 2010, (62)

as laj -, a=(0,a). This establishes the statistical
independence of widely separated experiments.

<y X, +a)

Small distance behavior

First of all, if the point (x,, x,, ..., x,) satisfies (x,)°
=(x,,)% i=0,1,...,n~-1, and inf; ,|X, - x,| = |x,~ X, |,
then we can permute the x; so that (Px,, Px,, ..., Px,) is
a Jost point (P%,,..., Pt)), P{,=Px,~- Px,,, and, for
some integer ¢, P{,=x,—x,. To see this we merely
choose the 3 axis parallel to (x,~x,), two perpendicular
axes at right angles to (x,— x,) for the 1 and 2 axes and
permute the x’s as explained above,

Consider W™(x,,...,x,) as |x,~x,|—~ 0. From above,
for sufficiently small |x,-%;1, WT(xp,...,x,)
=WT(Pt,, ..., Pt,). The behavior of WT(PE,, ..., Pt) as
P£,—~ 0, is determined by the function C(6)= C(£), where
C(E)= 28 [1+(g;- m)=4], (63)
m being the direction of the Jost point diameter. Hence,
for sufficiently small r= |x,-Xx, 1,

| WPy .o x) | <M1 +778), (64)
where M is a constant and s, a positive integer.

It is not difficult to check that the integer s, is es-
sentially the degree of the polynomial growth of
WT(q,,..., q,) in the momentum variable ¢, conjugate to
Pg,.' The high energy behavior of the theory thus deter-
mines the small distance properties of the theory. This
small distance property still obtains as m — 0. The
result is, therefore, also true for the vacuum expecta-
tion value of the product of field operators.

6. SOME RESULTS IN A NONLOCAL FIELD THEORY

The bound at an equal-time Jost point

When the Jost point (£,,..., £,) lies in the hyperplane
£°=0, so that £;,=(0,%), i=1,...,n, =37, &, then

d( ‘E) = kSlllIy)n {doy dky d,m}, (65)

where dy=|Z|, £,- 220, i=1,...,n; d,= |2 A,/

IE};I’ Ek'2<0’ (‘Ek/\ 'Ei)‘(gk/\ 2)20; i=1,...,n; and
dip=2- (£, \E,)/1 £, AL, |, where (£, AE,)- (EAE,)<0,A
(E,NED (ENE)<O (at least one of &,- Z, £,-Z is
negative) and £, (¢, A £,)=0, i=1,...,n

To establish the above result, referring to Theorem
4, one simply uses Lagrange multipliers to find the
extrema of f(m)=m-Z, m €¢ M, where M
={m:m?=1, m-£,>0, i=1,...,n} The values d,, d,
and d,,, refer to the possibilities that the extrema occur
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at an interior point of M, on the boundary of M and at a
corner of the boundary of M. The requirement that
these extrema are suprema give rise to the subsidiary
conditions.

The functions d,, d,, and d,,, are the following Lorentz
invariants:

‘22 ek,
B+3=0, BL+ =0,
lz'ik Ei (
l £2 £- i
| &, &, £,
2 Z.E -t
+|zg, £ £,-f,|=0. (66)
ot bt £

In a nonlocal field theory with a lowest positive mass
m particle, for a given Jost point configuration
(&y,...,&,), £2=0, i=1,...,n, using the above, we can
find the corresponding d(£) explicitly. We then have

[WT(E,, ..., E,)| < C(E)P(E) exp[—m d(£)], (67

where P(£) is a polynomial in the Lorentz invariants
(£;- £,) and C(£) is given by (63). 1t is not difficult to
show that this bound implies a small distance property
similar to that in a local field theory and a restricted
cluster decomposition property.

The above bound for the truncated vacuum expectation
value at an equal-time Jost point can also be derived for
nonzero spin fields. Tt is an attractive proposition that
it may be possible to extend this bound in some way to
enable us to define a Haag—Ruelle collision theory for
nonlocal fields. This is desirable as nonlocal field
theories seem likely for higher spin particles.

The case n <3

When n< 3, there always exists a Lorentz frame in
which (£,,...,&,) lies in the hyperplane £°=0.! Hence
in a nonlocal field theory with a lowest positive mass
particle the above gives us a bound for W(x,, ..., x,),

n<3, at the Jost point configurations (x,, ..., x,).
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As an application of this result consider the value of
the vacuum expectation value of the commutator
[#(x,), ¢(x,)] in a nonlocal field theory. Classically the
mass spectrum condition implies that no signal can
propagate with a speed greater than the speed of light.
In quantum field theory this last condition is thought to
correspond to the vanishing of the commutator
{d(x,), o(x,)] for spacelike (x,-x,). Since, whenn
=1, (x,~x,) is a Jost point whenever (x, — x,)’ = —p?< 0
and from above d(£)=p, it is easy to see that the mass
spectrum condition in a nonlocal field theory implies,
for (x, —x,)? == p?<0,

[([p(xo)y 9(x,)]o| < P(p) exp(~mp), (68)

where P is a fixed polynomial. This appears to be the
analog of the classical result.

It is worthwhile observing that this last bound can be
used instead of locality in defining asymptotic states in
two nonlocal fields.
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A simple theorem on projective spaces generalizes the concept of the Riemann sphere. This leads us
to a generalized interpretation of the ray space associated with a finite-dimensional Hilbert space. An
application is given about the way the rotation group acts on states of given spin ;.

The set of pure states associated with the Hilbert
space 3C, of dimension two is known to be isomorphic
to the ordinary real sphere S°. That is the case of the
sphere of spin ; states or the Poincaré—Stokes sphere
of polarization states of a photon of given energy—
momentum. From the mathematical point of view, such
a sphere is known as the Riemann sphere, isomorphic
to €2, the projective space in @?, i.e., a compactified
form of the complex line C.

We first intend to generalize the concept of the Rie-
mann sphere. For this purpose, let us denote by € the
projective space associated with @". If (a,, ay, . .. ,a,)
denotes an element of @", the projective space C" is the
set of classes of equivalent elements, the equivalence
relation being defined by

oy an) N(bu by .

Now, let K, be the set of all nonzero homogeneous
polynomials of degree » in two complex variables. Let
us define on K, the following equivalence relation

psp' €K, p~p'=re -0}, p=x,

and let us denote by I?,, the set of equivalence classes.

It can be easily proved that there exists a bijection of
K,., onto €. Indeed, we can associate with each element
{a,,a;,...,a,) of C" the polynomial a,x"! +a,x" %y + - - -
+a,. %" +a,y"" of K, ,. It is also clear that the equiv-
alence relation preserves the one-to-one
correspondence.

(a,ag .. Lb)ye=ae €-{0), a;=xb,.

Due to the fundamental theorem on roots of a poly-
nomial, any element of K, can be factorized in a product
of n elements of K,. This decomposition is not unique
since (i) we can multiply simultaneously two factors by
a and 1/a, respectively, (ii) the order of factors is
arbitrary. Nevertheless, the factorization of an element
of K" into elements of K 1 is unique up to a permutation.
Thereifore, If,, is isomorphic to the symmetrized pro-
duct (K, XK, X -+ XK,)/S(n), where S(x) denotes the per-
mutation group of » elements. Remembering that K 1 1s
in one-to-one correspondence with $%, we then have the
following theorem:

Theovem: The projective space €" can be identified
with the set of all sets of » —1 points’! on the real sphere
S,

From the physical point of view, it readily follows
that a state (a ray) in the Hilbert space 3¢, of dimension
n can be considered as a set of (» -~1) points on S%. As
an example, a state of spin j is vepresented by 2j points
on S2. In the special case of spin states, one of the ad-
vantages of such a geometrical description is to make
evident the action of the rotation group on states: We
only have to embed SZ in the ordinary three-dimensional
Euclidean space.
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Let us first examine the case of spin 3. Let |#) the
state corresponding to the unit vector # (it is the eigen-
state of the component J -7 with eigenvalue %/2). The
scalar product (#1#’) is, up to a phase factor, equal to
3(1+#-#'). In particular |#) and | - #) are two orthogo-
nal states (opposite on the sphere S?). The fact that any
state is an eigenstate of some component of J is a con-
sequence of the transitive action of SO(3) on S2, (This
property is no longer true for higher spin states.)
Obviously SO(2) is the stabilizer on a given state which
proves that S? is isomorphic to the coset space
S0(3)/50(2).

Let us now look at spin 1 states. In the |jm) notation,
such a state is a linear combination of eigenstates
11), 110), |1 ~1) of J,. The state [11) is known to be
the symmetric tensor product of |3%) by itself. There-
fore, the state |11) will be represented in our geometry
by two points at, say, North pole. The state |110) is ob-
tained either as the symmetric tensor product of 133
by |3 —3) (orthogonal states) or by applying the lowering
operator J°. Therefore, we have the description of the
three eigenstates in Fig. 1.

This can be easily generalized: The lowering operator
J_ associated with the z direction (South— North direc-
tion) when applied to a state with points at North and
South poles positions, puts down one point.?

Let us now make the rotation group acting on a spin 1
state. Let us first consider the case of Fig. la. The
stabilizer of the state 111) is SO(2). The corresponding
orbit is SO(3)/50(2). The same result is valid for the
state |1 —1). (Obviously 111) and |11 -1) are on the
same orbit. %) In the case of Fig. 1b, the stabilizer is
the two-sheeted group containing SO(2) as a subgroup
and a rotation of angle 7 around an equatorial axis. This
group will be denoted by 0(2) to which it is isomorphic.
Therefore, the orbit of |10) is SO(3)/0(2). Now the
most general orbit will be three-dimensional. This can
be shown in the following way. If we put two points on
S? in arbitrary positions, i.e., not on the same diame-
ter, there always exists a rotation of angle 7 which maps

(a) [19)] {c)
state [11) state |10) state 11 =1)
FIG. 1.-
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the points one on the other. This rotation together with
the identity transformation form the stability group

C(2) of the state. Therefore, the most general orbit is
isomorphic to SO(3)/C(2). Such orbits are parametrized
by an angle 8 such that 0 <8 < 7. A union of orbits with
the same stabilizer is called a stratum. We have then
proved that we have three strata on spin 1 states. They
are

=0, a single orbit of dimension 2, isomorphic to
50(3)/50(2),

0 < 6 <w, a continuous set of orbits of dimension 3,
isomorphic to SO(3)/C(2),

8= u, a single orbit of dimension 2, isomorphic to

S0(3)/ 2).

It is now interesting to look for a generalization of the
above results for all spin j states. For this purpose, we
found more convenient to look for those space represen-
tations which involve a given type of orbit. In other
words, given a (closed) subgroup H of SO(3), how many
points can be put on the sphere in such a way that this
set of points has H as a stabilizer ?

Let us first consider the case of a stabilizer of type
C(n), the cyclic subgroup of order n. Let A be the axis
of rotations of angle 27/n which form the group C(zn).

We will call it the vertical axis. It is clear that the
points representing a state which is invariant under C(n)
are necessarily either on the axis A itself or at the
vertices of some polygon having A as an axis and the
order of which is a multiple of n. We want C(z) to be the
stabilizer of the state, that is the maximal subgroup
which leaves the state invariant. This implies that the
state contains at least one polygon of order » since with-
out any polygon the stabilizer would contain SO(2) as a
subgroup. Because the number of points on A is un-
limited a necessary and sufficient condition for C(n) to
be the stabilizer of some state of spin j is 2j=> n.*

Let us now examine the case of the dihedral groups
D(n) as stabilizers. We denote by A the vertical axis of
symmetry and by & the corresponding diameter. The 2j
points must be either on & in even number and/or the
vertices of a polygon the order of which is a multiple of
n (n=2). We must distinguish between the two following
cases:

(i) There are nonequatorial polygons. The number of
them is necessarily even (at least two) due to the sym-
metry properties of D(n). The corresponding number of
points is a multiple of 2x. Since the number of points in
the equatorial plane is a multiple of » and the number of
axial points is even, we get the condition

2§ =2na +nb +2¢,
whereaz>1, 520, ¢>0.

(ii) There is no polygon except in the equatorial plane.
In such a case, we get

2j=mnb +2c,

with b>1, ¢= 0. In fact, this result is not valid when n
equals 2 because this is a situation where the symmetry
is larger if ¢=0, b=1 (no point on A) or if c=b=1
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(symmetry of the square) and whenn=4, b=c=1 be-
cause the symmetry is the one of the octahedron.

The results are the following:

SO(3)/D(2) is present for integral values of j (except

j=1),
SO(3)/D(4) is present for integral values of j (except
j=1and 3),

SO0(3)/D(n) with n#2, 4 is present for 2j=n +nb + 2¢
(b and ¢ nonnegative integers).

The situation is much simpler with the polyhedron
groups. It is for instance quite obvious that for the
tetrahedron group 7, 2j must be a multiple of four. This
is due to the fact that the tetrahedron is the only poly-
hedron with T symmetry which can be inscribed in a
sphere.

For the octahedron group O, the 2j points must be at
the vertices of an octahedron and/or a cube. Therefore,
SO(3)/0 occurs for all values of 2j satisfying 2j=8q
+6b >0, where ¢ and b are nonnegative integers. In the
same way, the icosahedron group Y will provide orbits
for 2j, 2j=20a +12b >0.

We are now left with the trivial cases SO(2) and O(2).
It is quite obvious that SO(2) occurs in all cases (con-
sider states !j7)) and O(2) occurs in integral representa-
tions (orbits of states 1j0)). Table I gives a résumé of
the above results.

We have thus classified all orbits associated with
closed subgroups of SO(3). The last line in Table I
corresponds to the trivial case where points are put on
a sphere without symmetry property.

The same geometric properties could be used to find
out the orbits of the group O(3). Other applications will
be derived elsewhere.
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APPENDIX

It is interesting to make explicit the relationship be-
tween the generalized Riemann sphere and spinor theory.
This can be made in the following way.

TABLE 1.

Stability group Type of representation D j>0)

0(2) j integer

S0(2) all

C(n) 2i=n

D(2) j integer (except 1)

D(4) j integer (except 1 and 3)
D(n) for n>2 (except 4) 2j=n+na+2b?

T jeven

%) j=4a+3b*

Y =10a+66%

Unit element ji>1

%a and b are nonnegative integral.
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A. spin 12-states

A stereographic projection from North pole maps S?
on C. The point with spherical coordinates (8, ¢) is
mapped on z = cotg(68/2) exp(ip) € €. Corresponding spin~
ors are

. (cos(6/2) exp(ip/2) >~<z>
T \sin(6/2) exp(- i@/2 1
(this notation obviously includes the possibility z=w
corresponding to 8=0).
Two states § and §’ are orthogonal if
Z'z+1= 0,

which means that the corresponding points (8, ¢) and
(6’, @') are opposite on S2,

The SO(3) action on S? is described by the SU(2) action
onC:

az+b
L - = e SU(2).
Ry where U (2)

a_b
-b a

B. Spin j states

States of spin j are known to be obtained as symmetric
tensors on spinor space. Let us consider the symmetric
tensor built on the spinors
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z\ (2. z,
1/°\1 )’ e 1)/’
with n=2j. Its components are

Tyyocu=2323° +- Z,,

1
T11~'-12:‘/—ﬁ (2,257 2,1+ 2,250 2 2,02, F -0+ + 2,257+ 2,),

ng...zzl.

More generally the component T,...,,..., with p indices
1 is given by [(n -p)!1p! /nl]*/? .S(z,.lz,2 “+-2;,), where S
is the symmetrizer. These equations provide us with
the exact relationship between the Euclidean sphere S?
and homogeneous polynomials.

iNot necessarily distinct.

%It readily follows that the set of all lowering operators is
identical to the set of all rising operators and is in one-to~
one correspondence with $°.

A1l states with magnetic quantum number equal to one (resp.
zero) in some direction are on a unique orbit,

iNote that the case 2j=n corresponds to a nonequatorial n-gon.
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From the infinite order equations of motion of conventional electrodynamics, one can extract by
order depression a subclass of second order equations of motion parametrized only by initial positions
and velocities. This article presents, with a view toward possible later quantization, a canonical
formulation of this electrodynamics. It happens to have the same aspect as for free particles: H =
(m24p)"? +(m3-+p)'". The p’s are constant, and the canonical variables q's describe straight lines
(particle positions cannot be canonical). The extension to the many-body problem is given.

1. INTRODUCTION

In conventional electrodynamics, the scheme of in-
teraction is the following:

particle 1~ field - particle 2.

The field produced by a particle is obtained as solution
of Maxwell’s equations; the force a particle undergoes
is obtained from the Lorentz force. The advanced and
retarded solutions lead to difference differential equa-
tions of motion of interacting charges, that is to say,
after proceeding to a Taylor expansion about the present
time £, to equations of motion of infinite order.! This
infinite number of degrees of freedom left the two-body
problem unsolved, and not even well formulated, and
led to important difficulties in field theory, such as in-
finite self-energy, owing to the necessity of having a
charge interact with itself on the same basis as interac-
tion with other charges,

The framework of the present article, “Newtonian
instantaneous action-at-a-distance electrodynamics, ”
is free of these difficulties. There is action-at-a-dis-
tance because the mediating fields are eliminated, and
one concentrates directly on the particle orbits. The
scheme of the interaction is: particle 1+ particle 2.
The interaction is instantaneous and Newtonian in the
sense that the acceleration of one particle is a function
of only velocities and relative positions of ail other
particles (and no derivatives of order higher than sec-
ond) evaluated at the present time ¢, not a retarded or
advanced time. The Newtonian order of the equations of
motion does not here signify Galilean covariance:
Lorentz covariance is in fact maintained, meaning that
the equations of motion in one Lorentz frame, express-
ing accelerations as functions of positions and veloci-
ties, will look, in another Lorentz frame, just the
same, with the same functions of positions and
velocities.

Kerner? showed formally that it was possible to ob-
tain such an electrodynamics, by starting from the in-
finite order equations of motion of conventional elec-
trodynamics, and depressing the order from infinite
to second.

The main topic covered here is a canonical formula-
tion of this Newtonian instantaneous electrodynamics.
The reason for seeking such a formulation is to prepare
the ground for quantization, There is an important the-
orem whose conclusion we must bear in mind before
undertaking any canonical formulation: it is the zero~
interaction theorem. 3 It states that, in a Hamiltonian
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dynamics giving invariant world lines in which (a) the
inhomogeneous Lorentz group is canonically represent-
ed and (b) physical particle positions are taken to be
canonical coordinates, then only free particle motions
are possible,

However, this is not an obstacle to Hamiltonizing an
interaction situation; rather it is a guide, It only means
that we can try to keep particle positions as canonical
variables: q;=r;. Then, Lorentz transformations cannot
be canonically represented. But it is easily seen that
the two straight line approximations of the electromag-
netic forces cannot stem from a common Lagrangian,
expanded up to order ¢, because each of them contains a
different kind of square root: [r? ~ (r Xv,)?]?/2 for parti-
cle 1, [r?— (rxv;)*]®/? for particle 2.

Thus, this leads to consideration of the second al-
ternative: We do not require that q;=r;, and we look for
some q;(r;,r, vy, vy). Lorentz transformations may or
may not be canonically represented.

It happens that the particular set of coordinates we
end up with presently is such that p; and p, are con-
served, g, and ¢, describe two straight lines, and H=H,
+Hy = (m} +p} %+ (m} +p})' /%, In other words, the prob-
lem is given a free particle aspect.

We will sketch briefly how, working first at the level
of the straight line approximation, we discovered such a
set, finding first a common action principle using 3-
vectors and a single time /, and then realizing it is
more powerful to look for some private action princi-
ples, one for each particle, using 4-vectors and two in-
dependent proper times. This helped to establish the
method.

Then, we will give the general result for the complete
order-reduced electrodynamics: We construct some
conserved energy—momentum B; for each particle, and
some 4-vectorial canonical coordinate £3; running in
straight line motion; then the q’s and p’s are easily ob-
tained from them: upon extracting the timelike part K,
from the 4-tensor Q; X9;, the 3-vector q; is given by
q;=(K; +p;#)/H;, which guarantees the satisfaction of the
canonical equations of motion,

As the canonical variables are found particle by par-
ticle, the scheme does not depend on the number of
charged particles, and can be applied to more than two
charges, provided that we know how to compute the
accelerations in the case of more than two charges; the
procedure to find these accelerations is devised.

Copyright © 1874 American Institute of Physics 1689
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FIG, 1. Notations.

Notations and conventions

The velocity of light ¢ is taken to be 1, unless other-
wise specified. €=e¢ e, is the product of the two charges
e;and e,. A lower index to a quantity @ refers to the
label of the particle. An upper index refers to an expan-
sion in powers of €: Q=3 €"Q}.

A and B being two 4-vectors, AXB will be the 4-
tensor whose components are (AXB)y,=(A);(B); ~ (A);(B),.
The 3-vector angular momentum will be denoted by L,
and £ will be the 4-tensor formed by L and K, the
barycentric momentum,. (A)g will be the 3-vector made
of the first three components of A, and (A), the fourth
component: A =[(A)g, (4),].

We will use the following 4-vectors:

W= (r;,6t), Ry=po=d, M=, de=(1‘V§)1/2dtu

dy;

dmy =4;,

api_ (v;%i)
and 9, for example, will mean 3/9yu. (see Fig, 1.)

R,(§) is a displacement operator which shifts y; into
W+ Eu, in everything that follows it. I the operand it-
self contains an operation such as d,,, the shift should
be done last,

Review of several basic results

From conventional electrodynamics, and in the case
of retarded interaction for example, we have

a,(8) = vy(f) = fir(£) = r§°, v4(8), V5!,

or, after a Taylor expansion about the present time
d\ .
aq(f) =g1[r(t>,v1<t>,(;t) Vz(t)], all i=0,1,2+-.

The essence of Kerner’s order reduction process? is

to compute the time derivatives of order higher than
second from the equations of motion, using power series
ine=eje,. If a,=3n, €alr,vy,v,), then '

a;=Aa;, #;=43;--
A= (V{—Vy)- a,+(2 e"a'{) Dy + (Z) e"ag) -y,
n=1 2

n=1
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a! is the so-called straight line approximation; it is
enough to know the two ai to start the whole procedure
(the question of convergence of the series is unanswered
at present).

This electrodynamics satisfies the Currie—Hill con-
ditions, * These are obtained by asking quite generally
that a dynamics ¥;=a,(r, r,, T,) keeps the same form
after a Lorentz transformation, namely that a;, a, are
the same functions as before transformation. This func-
tional invariance puts all frames on the same footing;
none is privileged.

The electromagnetic accelerations satisfy these con-
ditions because, starting from the advanced or retarded
point which is a Lorentz invariant point on the trajec-
tory, one can make a Taylor expansion about any time
considered as the present time., Thus the dynamics has
the same form in any frame.

For a class of solutions to Currie—Hill conditions,
which, as will be shown later, includes electromag-
netism, it is possible to make use of 4-vectors. Then,
the 4-accelerations A, satisfy Wray’s equations, ® the
only ones used here.

To obtain them, consider one point on each world
trajectory, 1 and 2. There is a time axis for which
these two points are simultaneous. (See Fig. 2.) Making
a Lorentz transformation amounts to taking another
time axis, which means, for example, keeping particle
1 fixed and moving 2 {o 2’. The arguments of
A(p,uy,u,) are shifted, but A; should not vary as it is
(du;/d 1y)-related to the shape of trajectory of particle 1:

(ﬂ'z : au2+A’Z * 3u2)A1(#, uy, uZ) =0,

We will also write this as 9A;/91,=0, or 9,A;=0. Simi-
larly, 8,A,=0. We see that the two particles are shifted
independently, in other words, that their proper times
are considered independent.

Hill gave integro-differential equations? for the
Currie—Hill conditions. Instead of these, we will in-
tegrate the manifestly covariant equations as follows:

Ai(u, u, uZ) = AiAfet (u's uy, uZ) + (1 - M)A?d'(u, Uy, uZ)a
W, ug, up) = AR + LUy, Uy, Uy, Ag( + SoUp, Uy, W)
— [ aERy (= DAL, 0y, 1) - 3 AT 1, g, w)

where

space

FIG, 2. Lorentz shift in Wray’s equations,
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Lr=poup+[pl+ (u-up)?]t/?
and where the functional Af is the same as in the
Liénard— Wiechert formulas of conventional
electrodynamics:
dujet
am

= Afuy - w5, uy, 4, Ay(evaluated at p5°h)].

A similar relation holds for A¥*® (within changing the
sign of the square root in &) but, in each case, it is the
Sfull A, [namely AL + (1 — ,)A3"] which comes into play
in the integrand and the last argument of Af. It is
enough to apply u,- 9, to check that A, satisfies the
manifestly covariant equations,

Note that when p is already in the retarded position
(then u%=0 and p-uy=— | p-u,l) the upper limit of in-
tegration &, in AI** becomes zero, and what remains is
A} evaluated for the retarded value of its arguments,
Thus, the boundary conditions of the Liénard—Wiechert
formulas are satisfied (I thank L, Bel for helping me
precise this point). Ordering by powers of €: A§ = GA} +
+€2A%+. .. allows to find everything knowing only the
two straight line approximations.

While du,/d T, = A, is attached to point y;, a conserved
quantity S is attached to no point in particular, and is
characteristic of the world lines in their totality:

81820, BZS=0,

where S can be a 4-scalar, a 4-vector, a 4-tensor, etc.

2. THE CANONICAL VARIABLES UP TO ORDER ¢
Computations with 3-vectors and a single time t

The method employed as a starting point involves the
Lie—Koenigs theorem,® followed by a solution to a
Pffaf’s problem. Let us present that theorem for two
particles labelled 1 and 2, whose positions are ry, ry,
velocities v, v, and accelerations v, =a,(r, v, v;). The
Lie—Koenigs formulation considers a vector with twelve
components: rq, Iy, vy, Vy; it is not known yet that r,=v,,
i=1,2. It also supposes that the integrand of the varia-
tional principle is linear in the time derivative of this
vector; the linearity ensures a family of first order
equations of motion:

5]2dt= 5] (Ui'i'i-i—Uz'.I'2+V1'i71+vZ‘§’2—H)dt=0

where Uy, Uy, Vi, V, and H are functions of r, vy, v,. The
equations of motion

U;=8,,Z(r, Vi, Va, Ty, Ty, V1, 1),
V,=8,Z (we have 3, r,=0)
should imply r;=v,, v;=a,(r,v,,V,), with prescribed a,.

The search for Z is greatly facilitated if we already
know the constants of the motion: P=U; +U,, L=r; xU,
+ry XUy + vy XV +vy XV, and H (linear momentum,
angular momentum, and energy).

The canonical variables are obtained by solving
Pfaff’s problem, that is to say by seeking functions
pi(r, vi, v5) and q;(r;, £, v, v5), i=1,2, such that

Ui-dr1+U2-dr2+V1-dv1+V2-dvz=p1-dq1+p2-dq2,

within, possibly, an exact differential,
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Concerning our case, we wish to have a Lie—Koenigs
action principle whose equations of motion will yield the
straight line approximation of the accelerations: v,
=ecal(r, v, vy).

For free particles, we would have

U,=U00=- % v,=V-0,
i i (l_vzi)ﬂf i i
H=H'-—"4 s
= A=W

Let us then expand all quantities and the time differen-
tiation operator in powers of €:

U,=Ul+eUl, V,=eVl, H=H1eH!,

d
pr =D"+eD' = (v~ Vy) - 3 +€(@ - 3y, +24 - Byy).

The € term of the equation of motion is

D'U}+ DU} =2, (Ut~ 1y + U} 1y - HY),

D'Vi=0,,(Ul- 1 +Uj- 1, ~ HY).
Kennedy’ had already worked out the constants of the
motion up to order e: P=P%+eP!.... Infact, each of
Kennedy’s conserved quantities, for example P, can be
written as P =P, + P, = (P} +€P}) + (P +¢P1) where P, and
P, are separately conserved up to order e: D1P‘1’+D°P}
=0, The term D'P]=(a} - av,)[m;vy/(1 - v})!/?] contains
only [r? - (rxv,)2]"/2 {not [r? - (rxv{)?]*/?}, which helps
in choosing P} as the part of Kennedy’s P! containing
that square root, Pi containing the other square root for

the same reason. A similar dissection occurs for the
other constants: H, L, K.

Upon noticing that P}- vy - H} =0, Pi- v,— H}=0, one
sees immediately that D'U}+ DU} = 9, (Ul - 1y + U} - 1, - HY)
is satisfied with U}=P},

The remainder of the equations of motion becomes
D'V}= av,(P% -r;{+P}. i~ H) =~ P}. But we also have

Vi XVi4v, XVi=L-r xU} - r,xU}
= (L{ - 1 XP]) + (L} - r, X P})

which, because of the square roots, we dissect into
v;XVi=Li-r;xP! i=1,2, This determines V} up to a
vector colinear to v;,. For example, V} =Ar+Bvy+MVy,
where A, and B, are known, and A; is unknown. Choosing
Ay such that

VA(LJ)B(_LTIV)

1-v§ 1-v:

allows us to satisfy D°V§ == Pi. The recipe to obtain the
undetermined term in V} will be justified later.

Finally, we are now in possession of the following
variational principle:

6 Py 1y +Py 1y +€VE- v, +€Vs v, - H)dt=0,
To solve Pffaf’s problem, we use the identity
Vedv=d[(1-v)v-V]

mv (1-v3)1/2
TP LR 'd(_ m

(V—vv-V))

and throw away the exact differential. This gives®
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MiVi P1
p -(_-—27177 t€ i

Q=T = — (1= ) 2A-vv) V..
my

Because of P1 ‘v;=H;, i=1,2, the Hamiltonian is H=H,
+Hy = (m} +P1)1/2+(le +P2)1/2 up to order e.

Computations with 4-vectors and two independent
proper times

Actually, one sees that the common action principle
breaks up into two private action principles, one for
each particle:

5 ) (P r
62] (Pz'r2+evz'i’2

- H))dt=0,
- Hy)dt=0,

T +eVi-v

where 8; means that only the trajectory of the ith parti-~
cle is varied. This is true because of the relations

P,=0,,(P;-v;- H)=0, D'Vi=—P, (i=1or 2).

We also see that we solved Pfaff’s
for each

P,-dr,+eVi-dv;=p;-dq; (i=1or2),

problem separately

thus putting them into the form
8;  pi-da;— (m}+ph)!/2dt=0.

This suggests accentuating the separation by using two
independent proper times instead of one single time, and
4-vectors instead of 3-vectors. We thus reach the idea
of two private 4-vectorial Lie—Koenigs action
principles:

8; ) Xi(k,uy,up) - dpty+ Yy, up,up) -duy=0 (=1 or 2)

1692

where X; and Y; are some 4-vectors. Their equations of
motion are

8:X,=08,,5,
with

dp; dw L dp dwi
Si(“,ul’ubd.r ’F) X g, * Y gy,

2,Y,=2,,S;

i=1or 2.

A close connection is suspected between P, - dry
+€Viedv, - H dt and X -du, + Y, -du,. This is confirmed
by the fact that there exists a 4-vector E;(u,u;,u,) such
that, when making #;=¢, in it [p —~ (r, 0);u; —~ (v;,)(1

2)'“ %), it becomes equal to (Py,iH,). It has to satisfy
(u1 9, +eAl- 8, ) E; =0 which can be integrated into

-0
Ei=—J mAi(p+Euy,ug,0) dg
where the primitive is simply evaluated at £=0, With
Al- Up(p - uy) = p(uy - %z)
[+ (p - up)*] ’
this yields

(E1 =nyuy +EE )

Bouiph -y~ }12111'112
(w2 + ()]t /2

£l up LYW
B w2 o\

u u; - U,
- “1[#2 +(p u2)2]1/z +H u[uziJr: uu§2]11 77 2)

with
- NP= p?[(uy - up)? ~ 1]
S0k u)? + 20wy WUy - Uy + (- 1p)?)

We have E}-u; =0 which means that E, - E;= - m? up to
order €,

Similarly, there exists a 4-tensor 2; equal to u, XE,
+eu, XY} with

U u
Yi=- [Om Al + tuy, 00, u)) dE = 'IWFZ (#

Wi (p-u

_W(prug g o) (- g - Wy W)\ 2 w2172
(ul‘uz)z-l [IJ. +(H \12)]

_ wrw(ye) w) 12 (u - \12)2'-1]“2
)¢ - 1)] - Nyl

(u1

whose components, once one has made {; =%,, are equal
to Kennedy’s Ly and K;.

The choice Xi-El satisfies 8,X;=8, 5 as 9 E1 =0 and
S; = (mquy +€E}) - u; = — my. For Y let us take €Y}, Y}
being the previously computed quantity. The second
half of the equations of motion 9,Y, = 9,5, becomes, to
order ¢,

d 1
(- 9,071 =2,, (B 244)-0,, (8 - w) - B - - B,
It is easy to check that this is true with the above values
for E% and Y}

It is also easy to check that &; [ Py-dr, +eVi-dv, - Hdt
=0 is obtained from: &, [ E; - duq+€Y} - du, = 0 by making
ty=ty=t in the integrand, Y}-du, can be written

Y} +uquy * Y% .dv
(1-v) s !
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(B -y + - uuy - up)
3

thus yielding
V% _ Y% +u1u; . Yi
(1-v))

which explains the recipe to obtain the undetermined
part of V} in the preceding section. The above relation
says that V1 is of the form

V1 A1<r+1 2V1>+B1(V2+'_—_vz_v>
It is also interesting to solve Pfaff’s problem in
terms of 4-vectors to yield some 4-vectorical canonical
variables Qq (i, &, Uy, Uy) and By(p, vy, up), Using vy - Y}
=0, we write E, - du1 +€Y} - duy = (mu, +€E}) - dpy
=Yy d[(¢/m)Y{]=B, - dQy with By =E;, Oy =ps- ¢/
mi)Y1 These 4-vectorial canonical variables satisfy

91$1=0, 8,B,=0, 8;(mQy) =By, ,0=0, &= XPy,

which parallels closely the relations for a free particle:
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Bitmyug) =0, Jlmu)=0, o lwu)=mu,, Syu;=0,
Ry=py Xmu,.
It is easy to check that

_ €y
P1 =y + [p."' " (“ - u2)2] +€a“21,

€
Dy=y —_71-;: au1219

S T
T [ty w2 - 13172
% 1n [+ (a1 a2 =112 e oy + - oy - wp
(- NBL2 ’

which shows that{, and B, are related to y; and myy
+euy/[ue? + (14 - u)*]' /2 by a canonical transformation, but
we may insist on saying that this is only a private
canonical transformation; a different generating function
Z, would be used for particle 2, so that, as shown pre-
viously, it is not possible to take particle positions as
canonical variables for the whole problem,

At last, it is easy to see that K;=qH, - pyf is true uwp
to order e, Actually, this constitutes the shortest method
to obtain the canonical variables: (a) compute E;., Then
write By ,_,, = by, H,); B, - Ey= - m} implies H, = (m}
+p})!/%; (b) compute 2;. Extract Ky by (Ki);=i(2)y, ;e
Then g, = (K; +p;#)/H,. Note that in this improved method,
we no longer have recourse to any Lie—Koenigs
formulation,

3. THE CANONICAL VARIABLES TO ALL ORDERS IN ¢

Extending what we have discovered at the order ¢, we
are going to construct one conserved energy-momentum
4-vector per particle; for example

9E = (ug- 8,)E; + (A - aut)El =0,
aZEI = - (u2 - a“)Ei + (A2 . B“Z)El =0,

The first condition of conservation can be integrated as
follows:

Eq=muuy = [, dER (§)(A, - 0,)E, ,

provided that (u;- 9,)&,(p,u, 4} =~ 1 as can be checked
by applying u,- 2,. Writing E; =mw +3,., €"E} allows one
to compute E; term by term. A direct consequence of
this expression is that

0
E(k, 0y, ) =gy + [y dER(£)(uy - 9,)Eq
=muy + By, ug, ) = Ey (4 + §ouy, uy, up),

or By(u + §puy, 0y, 1,) =myu,, This result is used while
proving that the second condition of conservation 2,E,;=0
is satisfied. We will also use

3By =(u- 0,)E;+(A -3, )E; =0,
BpAg=— (U 3,)Ar+(Ay- 8,,)A; =0,
O0iAp=(uy - 9,)Az+ (A9, )A,=0,
and impose (uy+8,)E,=0. Apply —uy-3,:
— (4 3,)Eq = o dER(O{[(8y- 9,)A ) 0, By
+(Aq- 8, )[(w - 3,)E )

»

But
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[(uy- 2,)A] 94,y
=[(A;- 8,,)A1]- 3, B
= (Az: 0)[(A1" 3y )By} = Ap- (A 8,)8,E,
== (A 3 [(; - 3,)E ] = (Ar 8, [(Aq- 0,)E4]
+[(A; - 8, )Aq) - 8, Eq
=~ (Ayr 3,,)[(u; - 9,)Eq] - (Ar- 0, ){(Ag 0,,)B4]
= [(uy - 3,)4,] 8, B,
== (uy - 8u)[(Ag* 0, Eq] - (Ay- 2, )[(Ag - 3,))E ),
giving
= (uy+ 9,)Ey
=~ [Ry(§)(Ag- 3,)E 23,
= S dER (D) (A1 3,)[(~ W+ 8, + Ay 0,))E4].
Also Ey(u + £puy, 14, uy) =myuy, thus leaving
8By =~ [y AERY(E)(A; - 3,)(2,E)).

3,E, is zero to lowest order ine. As A; contains at least
one ¢, ordering this equation by powers of € yields zero
for all successive terms of 9,E,; thus 9,E; =0 to all
orders. More generally, each time we will have an
integro-differential equation with a straight line ap-
proximation term which is zero or constant, the quanti-
ty satisfying it will be zero or constant,

Next, we prove that (E;)?=— m}:
(B0 == i = 2myuy - [, AER,(€)(Ay -3, )Ey
+[frg AERS (8 (AL~ 2, )E T,
Define
Wik, ur, u) = [, dE'Ry(§)(Ay * 3, )Er.

We need to change y into g+ £y everywhere in this
relation, including &,. The solution of (u; +3,) =~ 1,
(U.2 . au)£0=0 is

_ Ui+ 4 Uy -+ W
lED"‘ - B (‘11 .’.:!2)22_11 2 +g[_ Nz: ui * U.g];
thus
Eolp + Euy, uy, ) = Egjd, 0y, up) = £,
and

WE =W+ gu,upw)= [ dE'Ry(E + E)(A, -3,)Es.
Note that W(g) =mu, — Ey (g + &uy, 4y, u;) and, consequent-
ly, W(&,)=0. Differentiating

D8 <Ri(g+£)(Ar- 2, )8

=gt
8 d
dE'—|[Ry( (A - 8, )E,]
3[:0-: IR E) (A2,
=R1(§o) (A1 . a“i)Ex
0
. f a8 25 (R(6+ €) (A3, )B:]
¢

o=t
=Ry(£)(Ay+ 9, )Es.

Then
=0
WE(O)—Wz(gohzfe asw(e) - WE)
t=ty d&
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or

[
[/, FER1(ENA - 3, )Eq
=2 fezdﬁ[mtui E;(k + &ug,uy, up)]* Ry (§) (A - 3, )Ey
which shows that (E1)2=— mi — f, dER(§)(Aq- 9, ) (B ),
and thus that (E;)®=- m} to all orders.

We choose to take B, =E; and Ey , .., = (Py,2H,)
=(p,2H;). The above relation gives the problem a free
particle aspect:

H= B,

Now, let us turn to,. Write it as u, -~ Y/m,, Y,
being solution of the following integro-differential
equation

Y= [ dER(5)(Ar- 2y (5B, + Y),

with the same &, Applying u,- 3, gives 3,Y;= [} dtR,(§)
X(A;- 9y )E{=mquy - E; and, consequently 9;(mQy)=E,
=P,. Thus £, describes a straight line,

H=H +H,,

It is easy to show that 9,Y; =0 the same way as we
showed that 9,E; =0. This implies 2,0, =0. This relation
guarantees manifest world line invariance for the Q’s,
though there is no such thing for the q’s; this is one of
the advantages of the £’s over the q’s.

By the same method as for Eq(u + &uy, uy, uy) = myuy,
one can show that Y;(u + £y, vy, uy) = 0; this is also
obvious from

Eo(p + Eouy, vy, uy) = £y — =0

which makes the lower limit of integration equal to the
upper limit in Yi(p + §ouy, Uy, Up). Thus Qy(pq + £y, Ha, Uy,
u,) = iy. This allows the following proof:

0
dER,(B)(Ay - 3, ) 0y X By)

) f od.th(s)[(“-(uI u)ax)x$1+01><[~(“1'au)‘”1]

)

/ dER(£)(uy+ 3,) 0y XBy)
)
== Ry(5©; By [§2,

= =0y XPBy + g Xmquy.

Thus Q4 X P, satisfies an integro-differential equation
which is the same in form as the one for the quantity 2,
that one would compute knowing its straight line ap-
proximation value

8 = pyXmgy - [, dERY()(Ar+2,) €, (same g).
Thus 31 =Dl><‘131.

This is useful to show that, of the ten constants E,,
¢, we can build for particle 1, only six are independent.
We expect to find four relations, The first one is E; - E
= mf The remainder are found by considering the 4-
vector M; such that (My); =€, () ;(Ey),. As & is
9y XP;, M; is zero. But this is only three relation as,
once the first three components are zero, the fourth is
necessarily zero:

M, = 2[i(Py XK, + LyHy), - Ly - Py).
One can take P; and K; as the six independent quanti-
ties; then
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Hy=mi+PH/2 Li=(K;xP)/H, (Pi=p,).

Extracting K; from &, we write q; = (K; + p¢)/H,
(whereupon Ly=q, Xps). This formula guarantees that all
canonical equations of motion are satisfied, p,=— 0, H
is satisfied as p; is conserved and H does not depend on
the q’s.

q; = 0, H is satisfied because
_d Kitpit p
YT m " H

dpH =0, (mi+p})"/*=pi/H,.

The private Lie—Koenigs action principle is §;
X [P, -dy. It is straightforward to show that B, - dQy and

pi - ddy — H,dt; are equal within an exact differential:
(Kp)y= (2045 =i[0Q0)4(B1); = €4);(B1)]
-if (st~ 529 p, - @it
K1 + th o Z(Y1)
(Qi) H my ?
Py dqy=py - Q)s-py-d o 1(211)4)

Then, using the constraint H - P{=m? and H; dH,

=P1 . dpi, we find
B —p, (%P _
d(H1 (Y1)4 Py Hl

H: = mi
+ _1_111——d(Y1)4

T,Pﬁdﬂl)wi)

= Hid(Yy), — mid -5 (Y1)4 .

Thus

py-dqy - Hydty=pg - dy) s +iH1d(“ ﬁﬁ)

my

- H1 dti +d(m1 z(Y1)4 )
1

= (P s -dy)s +iH1d(itx -%11)_4)

+d (miﬂ%i)
=P, - dQy +d<m (Y:) )
Obviously

A R L)

is not a 4-vector, as it is obtained from the 4-vector

((Dl)s;zti (Y1)4>

by transferring part of its fourth component on its
spatial part to obtain a fourth component containing no |
€ contribution. But (g4, if;) belongs to the same straight
world line as £;.
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With the help of K; =q,H, — p,f it is easy to verify that
the q’s transform like physical coordinates, namely
satisfy the following Poisson brackets:

[a:,K]=[a;, Hla; - 1¢, [q,,p;]=1,

0
[qi; L]:— 1Xqi, g;z .

Thus the q’s behave as physical coordinates and are also
canonical variables: [q;,q,]=0, i=1,2, j=1,2. Hill’ has
proved that in such a case, §; had to be independent of
q; and 51, (j#7). This is the result of the zero-interac-
tion theorem, illustrated in q-space. There is complete
agreement with what we have found in our present
canonical formulation, as, precisely ;=0.

Naturally, the charge e; is located at the particle
position r;, not at the canonical position g;. Hill® made
some remarks related to measurement theory when the
formalism is quantized in terms of canonical positions,

Note that the separation of internal and external mo-
tions is made immediate by the fact that our formula-
tion is the same as for free particles:

P= P1 +Pa,

K=qH; — pit +QoH, - P,
1

H= (m+ B 2+ (m3 + )12,

L=qy Xp; +Q2 X Py,
and that Bakamjian and Thomas!® worked out this
separation for real free particles. They give the exter-
nal variables Q and P, and the internal variables q, p
in terms of q;=r;, p;=m;v;(1 = v3)1/2, Then their re-
sult can be used directly for our problem, where now
q; and p; are q4(r;, r, v, V,) and p,(r, v{, vy). Application
to first order in €, and at the nonrelativistic level gives

(rxXv)Xr
rrxv) ’

€ [(rxV)er v, (W,“..v)i/z]

p=mv+¢

=r+—| e+ n
q m| vi(rXxv)2 3T \v-r-v

with m™=ml+m;!, v=v,-v,, v=|vl, r=|rl. p happens

to be exactly conserved for the Kepler problem (mr
=err‘3); p is along the minor axis of the conic. Also
aXp=rxmv, and m-pX(qXp) =vX(r Xmv) + € which is
the Runge Lenz vector. This suggests proposing the
conserved pX(q Xp) as a relativistic generalization of
the classical Runge Lenz vector.

To all orders, the internal Hamiltonian 4 = (H° - P%)1/2
can be expressed as (m] +p?)!/%+ (m3 +p?)/%. Thus real
p corresponds to & = my +m,.

4. THE MANY BODY PROBLEM

We already know how to compute the accelerations for
the two body problem by Hill’s integro-differential equa-
tions. We are going to find how to do so for more than
two charged particles in two steps: first, carrying out
the process of order. reduction in one dimension for
three charges, then finding integro-differential equations
for the accelerations in 4-vectorial form.

We start from

1 1—37'2; P =e4[(electric field at 1 due to 2) + (electric
- v}
field at 1 due to 3)]
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_ _];_ 1+‘U2 _
—91{92 [M("%z 1- vZ)ret i (1 XZ)
1 1~-v 1 1+vs
x(L L= Jie[n (- ——->
(xfz 1+vZ>adv] 3[ N\ats 1-03) 0

rt- 2 152) m]}

which expresses the superposition principle in conven-
tional electrodynamics (A, and ); are any numbers),
x; 18 x; —x;, and we will suppose x; <xp <x;y.

The fields from particle 2 and 3 will be separately
order reduced, so that, at the order reduced level, a;
will be the sum of two contributions, one from particle
2, one from particle 3: @, =a,(2) +2,(3), but each con-
tribution will not be the one corresponding to each two
body problem.

We will compute only (1/x3,)[(1 + 6v,)/(1 - 6v,)] where
6 =1 for the retarded field of 2 at 1, and 6=~ 1 for the
advanced field.

"To compute x,(%;) and v,(¢;), we make a Taylor expan-
sion about £;, and evaluate time derivatives of position
of order higher than second from the equations known at
the next lower order of approximation. (see Fig. 3.)

xalty) = a(8) + (ty = (1) + 5, =T (o, ey,

Vy(ty) =v(fy) + QQZ—# (@ ti)"'laz(h),

with
_ (1 -0} ( ey(1 - v}) egﬂ‘“%))
%= my 2\~ Xy * X33
and

at1 = (1)1 - UZ) ax12 + (UZ - v3)ax23’
The exact light cone condition &, - #; = 8]%,(Z,) — %, ()] is

approximated by £, - £y = x5/ (vs = 6).

The series are easily summed to give

X

FIG. 3. The many-body problem,
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_12‘ 1+6v, 1-0v3 L 2e1e5Q2 —03)33/2 A =A,(2) +A(3),
Xiy 1—6v x my(vy =V R retys Vs
1-60 (2‘ e Al = MATH0) + (1= MAETG),
1 _vl)(l —’Uz) 1- GUJ. et sy _ ret (s Ly ret s
x@ —vieg)(vy +6) 4 LI = ATH0) = AFTHG) - [ LR (- DA, - 0, ATHG),
AFt(@) = Af[p1s + Luy, uy, 0y, Ry(- £)A],

_ 2ee; (1-vB)*/%(1 - v) (__9_ Xa3 + U (U3¥1p — Vax13) \
ny (vy = v3)xt Ky Xog+ 0(Vsx1y — VX y3) Eo= by W+ [pls+ (phyy - ui)2]1 2

%23 + 0(v3%17 — v2x13)
~ %y3(1 = 6vy)

1 -3
+
%15(Vy = V3)

). [change the sign of the square root in &; for A}™(;)].

A,(2) satisfies 9,A,(2) =0 by construction. To prove
254,(2)=0, apply u,- 4y and use 9,A1(2)=0, 9;4,=0,
9,A3=0; note that to prove 3,A,(2) =0 up to order €, we

In four-dimensional space—time, we put, in a very need these three relations to be true only up to order
natural way, €™!, Let us show how this works on AI**(2), for example

|
(Ug* 9, )AI™H(2) = (U5 - 8, ) AF™H(2)— f 2 ARy (— EN[(3 - 0, As] - 3, AT (2) + (Ag- 3,,)(u3 - 9, JAT™* ()],
(a5 9,401 9, ATH(2) = — [(As 3, As] - 3,AT°(2)
== (A5 3,,)[(Az- 3,)ATM(2)] + Ag- (A; - 2,,))0, AT (2)
= (Ag- 3, )[(wy - 2, )AT™@)] + (g 0,)[(As- D, )AT(2)] - [(Ag - 8,,)As] - 3,A1*(2)
= (A5 9y [(Ug - 9,,) AT (2)] + (A" 3,)[(Ag- 2, ) AT ()] +[(wy - 9,,)As] - 3, AT*(2)
= (U~ 9,,)[(Ag- 9, ) AT ()] + (Ag- 3,,)[(As- 2, AT™(2)],
Ry(- ) (w3 3,,,)Aq] - 3,A1°(2) = - ;;—‘5 [Ra(= ©)(Ag- 8,) AT (2)] + Ro(— £)(Ag - 3,)[(As- 3, )AT™(2)).
Finally,
(ug 3, AT (2) = (U5~ 0, JAF™H(2) + Ry(~ D) (A - 0, JAT(2) |55 - [, dLRy(= ) (Ar- 3,,)(05- 2,5+ Ay - 2y )AT™(2)

The term in e,e, is the one already found by Hill}; the
one in eqe; is new,

or
9;A1°H(2) = (uy - 9,,)Af™®H(2) + Ry(— £y)As- 0, ATM(2) - foczngz(- ) (Ay " 0,,)9;A1°4(2).

Let us show that the first term of the right-hand side =A,(2) + A{(3) satisfies them also,
equals minus the second. Remembering that A¥***(2) is
linear in A,,

A?"et(Z) = A?‘[u + LUy, Uy, Uy, Ry(— Cz)Az]

=Ry(— Ez)e(Az("L cuy) — W(Ar-w)

RTRAY;

(k- wp) in four-dimensional space—time; namely, we make the

_(+p-A)(puy - up—wp- 111)) shift gy — Wy — £u,, then consider the first three compo-
’

To compare with the preceeding method, we start the
computation of

~ [ 2 deRy(- D[A3) - 3, ]AL@)

Ip -l nents, go to a one-dimensional space, and make f; =%,
[: ps;— (x45, 0)] before doing the integration over ¢, and
we write, using 9;A,=0 at the next lower order, we find the same result as before. (In one dimension,
AY brings no contribution to second, nor to higher
(a3 3, JAT™(2) = Af[ -+, Ryl= &)(05+ 3, Ar] onder. ) ¢

SAH = Ryl B) (A 0y)Ay] It is necessary to end this section on the many body
=A¥[-+,~[Ro(- &)A5]" BygRa(— &)A;]  problem by a remark on the domain of applicability of
= — [Ry(= Lp)As]- 3 AT 2) the manifestly covariant equation. In general, we cannot
23T S2HS] Tugt deduce them for more than four particles in our four-
== [Ry(= &)As]" 3,[Ry (- Z)AP(2)] dimensional space—time: Write that the variation of
= Ry(= &)[Ay- 3, ATHD)] duy/dT =Ay(pys, 04,1, (all i #1) is zero when one shifts
2T 5P Cugti : the hyperplane containing all particles (they are thus
Thus, what remains is the following integro-differential instantaneous with respect to the time axis perpendicu~
equation: lar to that hyperplane) to a slightly different hyperplane
retroy [ 82 . ot still going through particle 1, 3, d7;0;A;=0; only if
0:AT(2) = - JO dER, (- DA, 3“2)83A1 @), n <4 can the d7; be chosen arbitr;ril‘y, implying 9;A;=0
whose solution is 9;A[°%(2)=0, since 3;A1**(2)=0 at the (@+1).

1 t . : - .
owest order However, for » particles in electromagnetism, the

Thus A;(2) is such that 9,A,(2)=0, 9;4,(2)=0; A,(3) straight line approximations satisfy 9,A;=0 at the lowest
satisfies the same relations, and, consequently, A, order:
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W (R0 0) = b - uy)
[ﬁ?j + (“’ij °ui)z]3/2
Then, from the preceding proof by recurrence, this

implies 8,A; =0 to all successive orders,

(0 3u,) 27 €45 =0 (£#)).

This allows us to apply our scheme of free-particle-
like formulation of particles.

CONCLUSION

We are now in possession of a formalism giving a
certain set of canonical variables such that each p; is
constant, and each q; describes a straight line. Its val-
ue resides in several features: it is relatively simple,
paralleling free-particle dynamics, is well defined and
computable to any order in ¢, and it applies to any num-
ber of particles.

On the other hand, the outstanding problem of quantiz-
ing with some q;(r;, r, vy, V) is totally unsolved. A new
recipe has to be found. Will it be some rule applicable
in any set of canonical variables?

About the last possibility, we note that, working only
up to order ¢€,q; does not go to r; in the nonrelativistic
limit (1/c =0), nor to first order in 1/c? (Darwin—Breit
theory); however, the new canonical coordinates ob-
tained by making a canonical transformation with the
generating function Z;, defined as the common part of
Z; and Z,, do go to particle positions in the same con-
ditions (but not to order 1/c?); thus, this new set stays
as close as possible to the set usually presumed to be
within known quantization rules.
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Radial charged particle trajectories in the extended

Reissner-Nordstrom manifold
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It is shown that the trajectory of a charged particle on the extended Reissner-Nordstrom manifold
can be such as to carry it into regions of the manifold where the definition of energy at infinity is
different from the one at its point of origin. The various types of radial trajectories are classified. In
the event one considers the manifold as having been produced by a collapsed star, there exist
trajectories which go through both horizons, reach a minimum value of r, and go through two more
horizons to a copy of the space in which it originated (flat at r = + «) without colliding with the

matter of the collapsed star.

In a recent paper! it was shown that there are two
distinct types of radial geodesics in the complete Kerr
manifold, which can be classified by their place of
origin on the manifold., This manifold contains infinite-
ly many copies of two distinct spaces, both flat at
r=1, It is also shown that geodesics cannot cross
over from one space to the other. However, this is pos-
sible if there is properly applied acceleration. It is the
purpose of this paper to show in detail how this cross-
ing over occurs for a very similar manifold: the com-
plete Reissner—Nordstr6m manifold. There has been
renewed interest lately in this manifold. Ruffini has
suggested that a magnetized rotating object should have
a nonzero net charge in order to achieve a minimum en-
ergy configuration, and also that a very rapidly rotat-
ing, sufficiently small star would be able to maintain
this charge in interstellar space.?

We will start with the Reissner—Nordstrém metric
in Schwarzschild-like coordinates®

dst=H-1dv?+ 2 d9% - Hd??, (1)

where
H=H)=1-=2m/r +e%*/%,

and dQ2=d® +sin®8d¢? is the usual spherical surface
element. Only the case m?2> ¢* will be considered since
otherwise the manifold is already complete. The com-
plete extension was first determined by Graves and
Brill* and given in a more convenient form by Carter.%
Carter’s extension is created by the repeated use of two
null metrics. We define one coordinate system (v,u, 8, ¢)
with metric

ds? =2drdu — Hdw? + v* d§¥? (2a)

and another similar coordinate system (r,w, 6, ¢) with
metric

ds? =2drdw — Hdu? + 72 dQ2, (2b)
where
_1 —1E0) = dr _2
u=3Fr)+t, w=3F(@)-f, and ar "H° (2e)

This implies that
Fr)=2r+mK og|7/v, - 1| +mK loglv/v.-1|, (3a)

where 7, are the roots of H with
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K,=(r,-v,)/(2¢?) and r,=mzx (m?-e?)"/2, (3p)

Note that the function F(#) is separately monotonic in
each of the three regions

I.v, <7,
II: ».<7<r,, 4)
IL: 0<7r<y_.

Each of these coordinate systems is analytic and exten-
sible to a manifold larger than the one upon which the
original coordinates were defined. Where these two
manifolds overlap, one may introduce full null coordi-
nates (u,w, 8, ¢) with the metric

ds? = Hdudw + v* d2. (5)

This overlap region will be one of the three regions in
Eq. (4); therefore, given u,w, and a region, one may
uniquely determine . We may then introduce, following
Carter, a new coordinate system (£,3, 6,¢) by

+h(u)=tan(@®+ &), +h(w)=tan(@®- &), ()]

where h(z) must be a monotone increasing function such
that h(z) =O[exp(-K,z)] as z —F=. The complete mani-
fold will then consist of an infinite sequence of (r, )
patches labeled (—,m), and superimposed on this, a
similar sequence of (r,w) patches labeled (#,—) running
perpendicularly to the (r,u) sequence. By labeling each
intersection by (z,m) the manifold consists of those in-
tersections where |n—ml <1, If n=m is odd (even),
then it is a II (IT) region; if » is even (odd) and < (>) m,
then it is a I (I’) region; if n is even (odd) and > (<) m,
then it is a I (III’) region. The choice in sign in the
definition of ¢ and ¢ is determined by which of the re-
gions I, I, II, etc. is under consideration. Given an
(n,m), the sign is + h(u) [- 2()] for m odd [even], and
equivalently for » with + k(w).®

By denoting by E the constant of the motion associated
with the timelike Killing vector, in the original coordi-
nates of Eq. (1), and using a prime to denote the total
derivative with respect to proper time 7, the equations
of motion for a particle in radial motion with charge to
mass ratio X are

()P=D*-H, (7a)
t'=D/H, (To)

Copyright © 1974 American Institute of Physics 1698
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where D=D¥)=E -eX/r. (Te)

Solving Eq. (7a) for the constant E (which has the inter-
pretation of the energy per unit mass in unprimed re-
gions and the negative of the energy per unit mass in
primed regions’), we have

E=eX/v+[H+ (r'P}/2
=eX/r+[1+ (@) = 2m/v + %/ v2]H/2
zeX/r+[1+50" R —m/r +e2/277], ®)

since, for large 7, both (#')? and H —1 are small com-
pared to 1. Since eX/7 is just the classical potential en-
ergy per unit mass of the electromagnetic interaction
between the black hole and the test particle, this equa-
tion has a reasonable appearance for an energy equation,
where the term e2/2+® is an additional gravitational term
due to the energy of the electric field associated with the
charge e, and the + sign is reminiscent of problems with
the Klein—Gordon equation in particle physics.® Here,
however, both signs are needed, since the sign of E
must be negative at » =« in primed regions.

The solutions to the equations can be written in the
following form when E? <1 (bound test particle), in
terms of a parameter n which is adjusted to be 0 at
maximum v,

r=m(a + Bcosn), (9a)
7= T1,=mlan+ Bsinn)/ (1 - E?)*/?, (9b)
t—ty=(T~T)E+ (2mE — eX)n/(1 ~ E?)*/?
P tan(n/2) +tan(n,/2) |
+ 3K [sgnD(r,)] log tan(n/2) —tan(./2) |
Lt | tan(n/2) +tan(y./2)
+3K- [sgnD('r_)]logl fan(n/2) —tan(n./2) | (9c)
where 7, are the values of 5 at which r=v,, while
a + B are the roots of #/{(r) =0:
a=0(n-EXe)/(1 -E%), B=[m?-2EXem+e?-1)]t/2/
[1-E|. (9d)

Solutions for E2>1 are similar and may be obtained
from Egs. (9a)=(9c) by the following substitutions.
Change everywhere (1 — E?)*/2 to (E® ~1)*/2, Then there
are two cases: If B is real, replace cosy by [sgn(r— o
~ B)] coshy, siny by [sgn(r ~ a — B)] sinhy, and tan(n/2)
by tanh(/2), where ¥ increases from —« if »>a +8
and from 0 if »y<a - B. If B is complex, define y*=— B
and replace Scosn by ysinhy, Ssinn by y coshn and
tan(n/2) by tanh(y/2), where ¢ increases from -, In
particular instances ¥, may both be complex, which
means the particular trajectory never crosses the
horizons, »=v,. From Eq. (9a) we see that these radial
trajectories are oscillatory in the coordinate », al-
though we shall see that they do not actually come back
to their starting point on the extended manifold (unless,
of course, one identifies various different regions of the
same type, which leads to serious causal problems);

raxf are just the turning points of this » motion. It is,
however, possible for o — 8 to be negative in which case
the particle strikes » =0 first, which is a singularity,
It is also clear that f becomes infinite at » =7,, which
merely indicates that it is no longer a good coordinate;
however, either u or w is finite at r=7,. From Eqgs. 3)
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and (7) we find that
w =[D+ (sgnv')(D? - H)'/?]/H, (10a)
w' = [~ D+ (sgny')(D? = H)*/2)/H. (10p)

It is then easily seen that at »=7, (roots of H=0) «'
(w’) is finite if sgn(»'D)=-1 (+1).

We now proceed to discuss the possible trajectories
in more detail. In particular we divide all trajectories
originating in a given region I into classes, as a function
of E, X, and e, which have a given future history. From
Eq. (7a) one sees that D may vanish along a trajectory
only when H is negative, which happens in regions II and
II. There may then exist trajectories for which D
changes sign while the particle is passing through
such a region. This would then change which of « or
w is finite as the boundary of the region is crossed,
and therefore change which boundary is crossed. For
sufficiently large v, D and E must have the same sign
[Eq. ('7c)], so that D is positive in region I and negative
in I’. We now restrict consideration to particles origi-
nating in region I, while in this region the energy is
given by Eq. (8) with a plus sign and is, of course, a
fixed number for a given trajectory thereafter. Defining

V,=eX/r+[HO]/2, (11)

we see that for ¥>v,, E>V,, but for »<7_, we have
either E= V, (if D>0) or E< V_ (if D<0). There are
then five possible types of trajectories. In Fig. 1 is ex-
hibited an E, X plane, for a specific choice of e=0.8 m,
which is divided into regions according to the future
history of a trajectory with those initial conditions. If
X < -1 then the trajectory ends at the singularity =0
in region III [type (a)]. If —1 <X <0, then the trajectory
enters region IIl, reaches a minimum value of 7 and re-
bounds through II back into another I region [type (b)].
However, when X >0, there are more possibilities since
D now may change sign. For 0<X<1, if E> eX/r_ the
minimum # lies in region II as above. But for E<eX/v_
an infalling particle starting in region I enters region

IT and, at some point in region II, D becomes negative.
The particle must then continue into region II’, reach

a minimum value of » there and rebound back into ﬁ,
where D becomes positive again, allowing it to exit into

E
I3
2
@
2
O
No aliowed
trajectories
-1 0 L 2 X

FIG. 1. Determination of the future history of a trajectory
which originated in region I with given values of the energy per
unit mass, E, and the charge per unit mass, X.
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3n

S5w/2

w2

0

- -n/2 0 /2 ®

FIG. 2. Typical examples of different types of radial trajec-
tories on the extended Reissner—Nordstrdm manifold. The
particular values chosen for these curves were:

(@), E=05, X==2, t,=—-13.57m; (b), E=0.3, X==0.7, ¢,
=—4.88m; (¢}, E=0.7, X=0.5, t{;,=-8.74 m; (d), E=0.96, X
=1.2, £,=-23.09m; (e), E=2.0, X=4.2, £;=—2.71 m,

another region I [type (c)].

If 1 sX<m/e, then there are three possibilities. If
E<A,, the trajectory enters into region II’ (D <0) and
hits the singularity at »=0 [type (d)], where A, =[mX
£ (X2 = 1) 2(m? - &%) 2]/e. If m/e<X, there are four
possibilities. If E<1, the trajectory is of type (c), end-
ing at =0 in III’. If 1 < E <eX/7, the trajectory will
stay in region I, eventually going toward »=+ = [type
(©)]. If A_<E, then one has trajectories of types (d), (c),
and (b), as shown in Fig. 1. However, for 1< E<A_,
the situation is more complicated because V,(r) has a
maximum at r=s,

s=e*{m-X|(m?*~e?)/(X2-1) [V B 1 2y, (12)
So if the initial value of 7 is greater than s, the trajec-
tory will stay always in region I, eventually going toward
¥ =+, If the initial value of 7 is less than s, the tra-
jectory will end at »=0 in region III’ [type (e), a choice
between motions of types (d) and (f).]. For larger val-
ues of E there are trajectories of types (d), (c¢), and (b),
as is shown in Fig. 1. In Fig. 2 typical examples of
these various possible trajectories are shown on the ex-
tended manifold for a fixed 8and ¢.

We note that for X <0 there exist trajectories for
which the energy is negative; i.e., states in regionI
for which E <0 even though D> 0. These trajectories
are an indication that the energy of electrical attraction
can be so negative as to overwhelm the energy associ-
ated with the rest mass.? In the case E <0 the maximum

value of 7 for the orbit, d, must satisfy
m+(m? = e} 2=y, <d<m+ (m? - e + 2X%) /2, 13)

For any particular fixed value of E, with D> 0, there
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is a maximum value of X for which that E can be real-
ized by a particle on a radial orbit—X,, =Er,/e. For
X=X .., d=7,and the gap between states with positive
D is zero, Therefore, increasing X so that X>X
causes D to become negative, and the value of d now in-
creases with increasing X, but the starting point of the
motion is in region I’. Also the energy is now positive
since the energy has been seen to be — E in region I’.

We consider in detail a sequence of particles all re-
leased at the same starting point, d> »,, but such that
the members of the sequence have increasing charge to

- mass ratio, X. Since all the particles are momentarily

at rest at »=d, the energy depends on d, and is given by

E,=eX/d+[H(@]'?, (14a)
with the turn around point at minimum # given as
d.=¢*(1 - Xx?)/[d(1 - A?)]. (14b)

Starting with X=0 and looking at particles with larger

and larger values of X, one obtains trajectories of type
(b), above, similar to geodesic trajectories. But as X

approaches

1/2

X0=Z: dd——:::‘ <1,

e

d. approaches 7_ and u_, the value of u at »=7»_, ap-

. proaches +«, For X>X,, D(r.) <0 and w_ is finite

rather than u_, while d_ is again less than 7_ but in re-
gion ITI’, So the trajectory now exits from region I into
m’ [type (c)]. Increasing X further to X=1, we find that
the particle hits the singularity at ¥ =0 in region I’
[type (d)]. However, there is a point at which the charge
to mass ratio gets so large that there is no longer an
attractive force at »=d. For X greater than

X, =[m - (e¥/d))/[2H@}/?>1,

a particle released at » =d, momentarily at rest there,
will be repelled toward »=v, all in region I [type (f)].

It is seen that a full set of (radial) trajectories on the
extended manifold requires use of both the plus and the
minus sign for the energy in Eq. (8). On those trajec-
tories for which D changes sign, one must use both signs
in Eq. (8) for a single trajectory. Also note that even in
the case where the collapsing matter which caused the
horizon is not ignored, the trajectories of types (c) and
(d), as well as (f) are perfectly feasible since the matter
lies only in unprimed regions!® and no collision with it
occurs for these orbits.
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A general method is developed for obtaining Clebsch-Gordan coefficients of finite groups. With this
method Clebsch—Gordan coefficients are obtained in a matrix form, whereas the so-called
basis-function generating machine generates these coefficients one by one. The method is applied to
double point group D3, the point group T, and the nonsymmorphic space group ﬁ,‘,‘}l. It will be
shown that the method can be simplified by the conservation law of the reduced wave vectors when

applied to space groups.

1. INTRODUCTION

In case when Clebsch~Gordan (or CG for short)
coefficients of a given finite group are to be obtained,
one usually makes use of the so-called basis-function
generating machine to obtain them.® In this method, by
the successive applications of projection and step opera-
tors to the basis functions for a direct product repre-
sentation, one can generate basis functions one by one
for the irreducible representations which are to be ob-
tained by reducing the direct product representation.
Since this method is somewhat heuristic, one sometimes
makes vain efforts. If one operates a projection opera-
tor on a product basis function and obtains a vanishing
result, one must operate it on another function. And
this procedure must be repeated until a nonvanishing
result is achieved.

A prescription to be presented in this paper straight-
forwardly gives in a single matrix a whole set of CG
coefficients for a direct product of two irreducible
representations. Moreover, the prescription is found
to be very useful when applied to space groups.

In Sec. 2 a theorem is presented which provides us
with a similarity transformation matrix connecting two
equivalent irreducible representations. Klauder and
Gay’s method? to induce the irreducible representations
of solvable groups proves to be a special case of this
theorem. In Sec. 3 the theorem is extended to reducible
representations, leading to a general prescription for
obtaining CG coefficients. In Sec. 4 the prescription
is applied to two point groups ]33 and T. In Sec. 5 the
prescription is also applied to a nonsymmorphic space
group DL? (P4,/mnm), the symmetry group for the rutile
structure in paramagnetic phase. Through this applica-
tion, it will be shown that the prescription can be sim-
plified by the conservation law of the reduced wave
vectors when applied to space groups.

The discussion in this paper is limited to unitary
groups. The extension of the method to antiunitary
groups will be discussed in a later paper.

Since every representation of finite groups is equiva-
lent to a unitary representation we assume, without loss
of generality, that all the representations appearing in
this paper are unitary.

In addition, Schoenflies’ notation is employed to ex-
press point groups and space groups.
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2. AMATRIX CONNECTING TWO EQUIVALENT
IRREDUCIBLE REPRESENTATIONS

The starting point for this paper is the following
theorem:

If D and D’ are two equivalent irreducible represen-
tations of a finite group G, being related by a unitary
matrix U through

D'(v)=UD(r)U" for every element r in G, (1)

then a matrix given by
2. D'(n)AD()! (2)
r€a

is equal to the matrix U in Eq. (1) apart from a constant
factor, where A is an arbitrary matrix.

Proof: Consider a matrix

VEZ(} D(¥) BD(v)", (3)

where B is an arbitary matrix. The matrix (3), which is
well known as a matrix utilized to prove the orthogonali-
ty relation for the irreducible representations, is by

Schur’s lemma equal to a scalar multiple of unit matrix:

r;g D(»)BD(r)' =2l1. (4)

If the matrix B is replaced by a matrix A through
B=U'A, Eq. (4) becomes

> D(»)UAD(»)' =2Al1. (5)

reG

Multiplying this by U on the left, we get

AU= 2. D'(r)AD(r)', (6)
rcG
where the relation (1) is used. Thus the theorem is
proved.

If, in the above discussion, G is an invariant subgroup
of prime index of some larger group and D is a self-
conjugate irreducible representation, then the matrix
(2) is equal to the matrix C(X) in Klauder and Gay’s
paper, 2 where X is used for A.

According to the above theorem, when two irreducible
representations D and D’ are proved equivalent, i.e.,
when characters of D and D’ are the same, one can find
out the matrix U in Eq. (1) by calculating the matrix (2).

Copyright © 1974 American Institute of Physics 1702
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3. A GENERAL METHOD FOR OBTAINING
CLEBSCH-GORDAN COEFFICIENTS OF
FINITE GROUPS

In this section we shall discuss a general method for
obtaining CG coefficients of finite groups. This is done
by extending the theorem of the last section to reducible
representations.

Let D be a reducible representation of a finite group
G, and consider the matrix
2. D(r)BD(»)", (1)
reG
where B is an arbitrary matrix. Assume that D is com-
pletely reduced to a direct sum of two irreducible rep-
resentations D*’ and D®3:

DY) 0
D(’V):
0 D®(y)

for every 7 in G. (8)

Corresponding to the block diagonal form of D, let us
block off the matrix B in a similar way. Then the matrix
(7) can be written as

25 D(r)BD(7)'
rCa
D®(r)  O}| By By, [[DV () 0
<¢lo D®()]lBy B0 D® ()

ZD(I) (,',)BIID(I) (1,.)1’ ZD(I) (T)BIZD(Z) (,},)1

2.D® (1)By DV (1) ZD® (#)By, D ()

In the matrix of the right-hand side, if D'’ and D‘® are
inequivalent, the diagonals are scalar matrices and the
off-diagonals are null matrices, i.e.,

Al 0
2. D(»)BD(r)' = . (9)
rCG 0 I—‘-l ’

The scalar constants A and u are related to the traces
of B;; and B,,, respectively.

Now let us denote by D’ a reducible representation to
which the completely reduced representation D given by
(8) is transformed by a unitary matrix M:

D'(y)=MD(x)M! for every 7 in G. (10)

Replacing B in (9) by M'A and multiplying both sides of
(9) on the left by M, we obtain the matrix equation

AMy, WM,

2, D'(r)AD(r)' = ,
TeG AMy,  uM,,

(11)

where the relation (10) is used.

The representation D’ in (11) can be general reducible
one. If, in particular, D’ is a direct product represen-
tation of two irreducible representations D'® and D®,
then the matrix on the left-hand side of (11) provides us
with unnovymalized CG coefficients. In other words, CG
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coefficients are obtained by normalizing the columns of
the matrix

F%G) = 2. [D(r)xD®(n)]AD(r)', (12)

€a

where the symbol X stands for the direct product of two
irreducible representations, and D is a completely
reduced representation for D'® xD'®,

Before applying above results to practical problems
we shall mention two points which will prove useful later
on.

If a group G has a subgroup H, the group G can be
expressed as

G=agH+ag,H+:-++a,H,

where a;, a5, ... , a, are coset representatives of G
with respect to H; we can take g, = e (the identity ele-
ment). In this case, calculation of the matrix (12) is
practically simplified in the following two steps. Let us
first calculate the matrix

F*5(H) = ; [D@(r) xD®(#)] AD(#)"
7CH

(13)

summed over all the elements of H, then the matrix for
G

IraxB(H) +[D(nt)(a2) XD(B’(az)] F\QXB(H)D(aa)T-
+.++ +[D'*(a,) XD*®a, )| F***(H) D(a,,)’. (14)

Equation (14) is clearly identical with F**¥G).

When G is a double rotation group, there exists a
barred element 7 for any element » of G. If » is a rota-
tion through an angle ¢ about some axis, the ¥ may be
interpreted to be a rotation through an angle ¢ +27 about
the same axis. Representations of a double group can be
classified into two types according to whether D(#) =D(»)
or D(7)= - D(r). Since in either case the relationship
holds

[D(a)(7) xD(B)(F)]AD(7)1’ — [D(a)(,r) XD(B)(,V)]AD(,V)?’

it is sufficient to take summation in (12) or (13) over
only the unbarred elements of the double group.

4. TWO EXAMPLES: D; AND T

We are now in a position to apply the prescription (12)
or (14) to practical problems. Let us first take the
double point group 133 as an example. The group 133 has
C, as a subgroup of index two: D, = 63 +Cz,,63, where C,,
is a rotation by 7 around the x axis. The matrices in
six irreducible representations of 1_33 are given in Table
I for three elements of C; and for C,,. Among these
representations, D,;, D,, and D are the representations
such that D(#)=D(r), and D,, D, and D, are otherwise.

Let us consider a product representation D, xDq,
which is reducible to Ds + D, +Ds. In Table I, the
matrices in Dy XDg are also shown. Thus Eq. (13) is
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TABLE I. Irreducible representations and a direct product representation 55 xDg of 53.“
B, E Cs, C3 Coy
D, (1) (1) (1) (1)
D, (1 (1) (1) (-1
D, (1) (-1) (1) (2)
D, (1) (-1 (1) (1)
[0 2] L -] [ [+ 7]
01 0 —w? 0 —-w w? 0
D, [1 0] [wz 0] [—w 0 ] [ 0 wz]
01 0 -w 0 ot ~w 0
1000 -1 0 o 0 1 0 0 0 0 0 0 -1
- _ — 42
DyxDg 01 0 w* 0 0 0 w 0 0 0 0 w 0
0010 0 0 w 0 0 0 o 0 —-w 0 0
00 1 0 0 0 -1 0 0 0 1 1 0 0 0
2w=exp(mi/3).
1 00 0]jay; e a3 a1 0 0 0 ayy tiay Gz ~ il 0 0
o 010 Of)as aps s azfJ0 1 0 0 1 o 0 0 Qg — 33
58 =2X -
F(Cy) 0 01 0)]as axp azz az, |0 01 0 0 0 (g3 — Gy 0
0 00 1]))ay ag a3 a,Jj0 0 0 1 Qg =10y Qg Fiag, 0 0
-1 0 00lay;, a2 a5 a1a -1 0 O O In this matrix, the first column gives us CG coefficients
0 20 0 0-1 0 0 of Dy XDg into D, the second column into D,, and the
+ e @21 G2z Gz Qo - third and the fourth columns into D,. Normalizing each
0 0 w Ollasy ax as; as 0 0-u® 0 column of the above matrix, we have
bOOO—inlaQa,;sa‘,L LO 0 0 w 1T 1T 0 0
100 a 7, a, a3 a0 JJ 0 0 O 0 0 0 1
0-w 0 OfJay as ay; ax 10 1 0 0 0 -1 0
+
0 0 w® 0llas ass as; as, JJO0 0 —w ’ -i/V2 i/V2 0 0
0 0 0 1lay asp ags a JJO 0 0 o :
e - - apart from a constant factor of absolute value unity.
ay @z 00 Thus we obtain Table II for the CG coefficients of Dy
XD, of double point group D, with respect to bases which
0 0 0 ay . 6 .
—6X , w=exp(ni/3), transform according to Table I.
0 0 a;0
3 In some cases, we do not need all of the QG cgeffi_—
a5 az 0 0 cients for the decomposition of Dy XD, into D, +D, + Dy
and also Eq. (14) is
ay a2 0 Y [0 0 o0 -1 ay a, 0 0
0 —u2 TABLE II. Clebsch—Gordan coefficients for 135 x Dg of point
0.0 0 a N 0 w Off0 0 0 a, group Dy with respect to bases which transform according to
0 0 a4 O 0 -w 0 OJjJ0 0 a4y O Table I,
Ay g O 0 Ll- 0 0 O}je,a, O O ¥(Dy ‘?(1_94) ¥,(D) ¥,(Dy
.0 o0 o 2D9iy(Dy 12 1Z o 0
0 0 $1(Dg Yo Do) 0 0 0 1
x|’ pADYYy(DY 0 0 -1 o
00 0 -w PoDYp (DY  —i/VZ /N2 o 0
L 0 0 -u?

J. Math. Phys., Vol. 15, No. 10, October 1974
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T E C,, C,, Cs, Cy(111) ci11y
D, (1) (1) (1) (1) (1) (1)
D, (1 (1) (1) ( (e) (€?
Dy ) (1 (1) (1) (€% (e
100 i 0 o0 -1 0 0 -1 0 0 0 0 1 01 0
Dy 01 0 0 -1 0 0 1 0 0o -1 0 1 0 0 0 0 1
0 0 1 0 0 -1 0o 0 -1 0 0 1 0 1 0 1 0 0
2¢ = exp(2mi/3).
but only the coefficients into, say D, (i.e., the part 0 0
shown by dotted lines in Table II). In such cases, it is
sufficient only to calculate a matrix 0 @),
2. [Ds(r)XDe(r)]AD(7)", (15) ay 0
e 0 0

where A is a 4 X2 rectangular matrix. First, carrying
out the summation over the elements of C; we get

100 olla, an
010 ay an ||t O
0 01 Offa;; as JI0 1
000 1lla, aw
1 0 o olfa, o
+] 0 -w* 0 Ollan apll-«* 0
0 0 w Ofla; asp 0 w
0] 0 0 —-1lay ay
1 0 0 o)fan a
+10 -0 0 Ollay a5 ||-w 0
0 0 w?® 0Qlan am 0 o
t) 0 0 1 u“ Ay

TABLE IV. The Clebsch—Gordan coefficients of D, XD, into D,
for point group T. The constants a, b, ¢, and d are determined
in the text,

¥y (D) ¥,(D) ¥y(D) (D) (D) &)

¥ (DYDY 0 0 0 0 0 0
P (DY, (DY 0 0 a 0 0 c
Py (D) 3Dy 0 b 0 0 d 0
Yy (DY (D) 0 0 b 0 0 d
By (D) Po (D) 0 0 0 0 0 ]
4, (D) 93D, a 0 0 c 0 0
3Dy (D, 0 a 0 0 c 0
P3(Dy) by (D) b 0 0 d 0 0
P3(D) d3(D ) 0 0 0 0 0 0

where = means that a numerical factor common to all
the elements of the matrix is neglected. Then, augment-
ing this with the matrices for C,,, we have

0 0 0 0 0 -14Jjo0o ©
0 Qs 0 0 —-w® O0f]0 an]|0 -w
ay 0 |Tlo -0 0 olfa. 0 J|-0? 0
0 0 1 0 0 ofjo o0
0 0
0 Ay ~ Ay,
= Az — Ay 0 ’
0 0

and the part in Table II is obtained.

In this way one can obtain CG coefficients whenever
irreducible representations concerned are known.

In the above example, we have considered the case in
which an irreducible representation is contained only

TABLE V. Group multiplication table of the double point group

Cy cyt &) Coa Co Cox Cay
¢, Cy E [ory Cyy Gy Ty Ca
¢t E G, Cy Cox Cyy Ty Coy
% [eri ¢y E [ Caa Cyy Coy
Cuw Cox Gy Cop E [ Cy ctt
Cop Gy Ty Gy Cy E oy C,
Coe Ty Cy Cyy ¢yt C, E Cy
Cyy Coa Cop Cox Cy ci C, E

J. Math. Phys., Vol. 15, No. 10, October 1974
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FIG. 1. Stars for the points X, W, A, and V of the group Dii.

once in a direct product representation. Next, we shall
consider a case where one and the same irreducible
representation occurs in a direct product representation
more than twice. Let us take the point group T as an
example.

The point group T contains D, as a subgroup and can
be written T =D, +C,(111)D, +C2%(111)D,. In Table III
the irreducible representations of T for four elements
of D,, C,(111), C%(111) are given. A direct product rep-
resentation D, XD, contains the irreducible representa-
tion D, twice: D, XD,=D, +D, +D, +2D,. A similar cal-
culation as in the above example gives us

Z’l‘ [D4('V) ><D4('V')AD4('V)1

[~ o 0 o
0 0 Qy5 +aq, *ag
0  ayptagta, O
0 0 g tag tay,
= 0 0 0
ay3 ta, tag O 0
0 ay3 ta, tag O
Qg tag tag, 0 0
- 0 0 0 J

J. Math. Phys., Vol. 15, No. 10, October 1974

Thus the CG coefficients of D, XD, to two D,’s turn out to
be those shown in Table IV.

A remaining problem is to determine the constants
a, b, and ¢, and 4 in Table IV. But these constants can
take arbitrary values so long as they satisfy the ortho-
normality condition of CG coefficients. The reason for
this is that, as easily be seen, the matrix F***(G)
satisfies the relation

F*HG)D(r) = [D'*(7) xD'®(7)| F**XG) (16)

irrespective of whether D'® xD'® contains an irreduc-
ible representation only once or more than twice. Thus
we can choose a=1, =0, and so ¢=0, d=1; or, if
the resulting basis functions are to be symmetric and
antisymmetric product, we conveniently choose a="5
=1/¥2 and ¢c=-d=1/V2, respectively.

5. APPLICATION TO SPACE GROUP

We will consider the nonsymmorphic double space
group D}}  the symmetry group for the rutile structure
in paramagnetic phase (see Table V); the irreducible
characters were given by Dimmock and Wheeler.*
Unless otherwise noted, various notations in this section

follow those of Dimmock and Wheeler.

Every irreducible representation of space group is
specified by a star of reduced wave vector, and is easily
induced from a small representation.” In Fig. 1 the
stars of k, and k,, the reduced wave vectors for points
X and W, respectively, are shown together with the
stars for points A and V. Looking at these stars, we
see that a direct product representation of an irreducible
representation for the point X and that for W is, in
general, reducible to a direct sum of the irreducible
representations for the point A and those for point V.

TABLE VI. Small representations for the point X(0,7/a, 0) of
the group DY},

aX) AX) Akxy) AKX
@ (32 (G 6 6
e ()CNC 6
RN L N O T W

10

{Unl th (0 1
0

i

{Co I t+T}

{Cyyt t4+7} _‘21 ?—z 0-1 _01
{U.ilt+; g_o ::; g_o(::))((jo _Og)) g_(;_og xexpliky * (t+7)]
e (9700 (23) (47




1707 Isao Sakata: A general method for obtaining Clebsch-Gordan coefficients. | 1707

TABLE VII. Small representations for the point W(0,7/a,¥) of the group Di}.2

A(W,) AW,  A(Wy)  B(W) AW
(E18 [}) ‘1’] @ o o 1)
1 o xexp (iky « t)
{C,y1 £} I:O 1 ] (@) (1) (@) (-1
{0y t+7} [_ rexor ey ol 2’] ) @ @ 9
) . xexpliky * ¢ +7)]

{o,1t+7} [_ iexp((’_ oy tiev/ 2)] 1) =D )

P<y<n/e.

tor. The irreducible representations D'*’, D'¥2’, and
D7) are induced from the corresponding small repre-
sentations. For instance D'*1({C,,!t}) is obtained as

In Tables VI through IX the small representations for
these points are listed, which are obtained by making
use of solvability of space groups.® The ith small rep-
resentation for a point P in the first Brillouin zone is to
be denoted by A'%i in these tables, where the barred
representation AP’ is a small representation in which
the matrix for » and that for ¥ differ in sign.

DIV, |th

An irreducible representation of space group is in- 0 A% ({E|0}H{C,, 1tHC,,| O}

duced from each small representation.® Let us denote

by D‘P* the irreducible representation which is induced AXV ({C,, 01 {C,, [tHoD 0
from A'®Y), As an example, consider the CG coefficients
into D7’ of a direct product representation D'X1’ xD™¥z2), .
which is reducible to D4’ +D'A7’ + D8 +D%Y7) accord- 0 aR({c, [ t))
ing to procedure described in Ref, 7. These coefficients = xp o
are obtained by calculating the matrix at(ic, l Caat}) 0
> ¥ DV (e V(a) +th XD¥2({a | V(a) +t)]A
7 0 0 ekt 0
D47 ({a| V(a) +th", (17) 0 0 0 ettt (18)
= 8
where o is the rotational part of the elements of space o iCaakyt 0 0 0 ’
group, v{e) the shortest nonprimitive translation vector o et
associated with o, and t the primitive translation vec- 0 —ex’t 0 0

TABLE VIII. Small representations for the point A(0,0,7) of the group Dii. 2

A(A) AW AlA)  A(A)  AlAY [T A(Ay)
10 (1 0 10
{EIt} 1) 1) 1) 1) o 1] o 1] o 1]
{c,18) @ 1) ) @ |t _0] [" 0.] K ".]
- 0 _1 _0 -t :0 —* xexp (tky *t)
1 0 0 -1 0 ~1
{og 1t} 1 -1 -1 L [0 -1 | 1 0] 1 0]
L . L L
-1 0 0 0 i
{031 & ) v v @ T3] E 0] ; 0]
_ _ [0 -1 -n 0 - 0
{c,1t+7} 1) e -1) (=1) 1 o] o —in] 0 m]
{ctit+r} @ @ v v | 0] [ 0] [in O]
F_l 0] rL 0'n ;0 -1 xexplik, * (t+7)]
0 -1 0 —-in 0 in
{0y lt+7} ® 1) o v ] 0] . 0] K 0]
. _ [0 1 07 [ 0 -1
{oplt+ 7} @) -1 M 1 1 0] [in 0] i 0]

q<y<w/c, n=explin/4).

J. Math. Phys., Vol. 15, No. 10, October 1974
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TABLE IX. Small representations for the point V(r/a, 7/a,?¥) of the group Dii.?

A(Vy) avy) AV AlV) AV AV A(vy)
(10 [1 0 10
{EIt} 1) 1) 1) ) [0 1] o 1] [0 1]
. .
{c, 18 o ) 1) [‘(1) _(1)] . _3] . _2]
- r = xexp(iky *t)
1 0 0 -1 0 -1
{og 1t} (4] 1 -1 (-1) o - 1] 1 0] i o]
[~1 0 [0 i [0
{og 1 £} 1) ) -1) -1 o J E 0] ; 0]
. . ) ) [ 0 -9 T EX)
{c,1e+7} ) @ -3 0| 0] ° _n] ¥ n]
0 6 [ - 0 0
{ctit+r} (-9 @ (—14) @ 0 ] S j' n. ]
4 -0* 0 i 0 -2 .0 n xexpliky * (t+7)]
} ; ; , 0 -6 [0 -n [ 07
(o, t+7} ) 0 o o [ 0] 2 0] 2 0]
] , " . [0 o [0 — i [ 0 i
{o,,1t+7} ) W R 0] ’ ’g] 0 O]
30< y<a/c, 8=explicy/2), n=explin/4).
where {E10} and {C,,!0} are chosen as coset representa-  and
tives of the whole space group with respect to the group
of ky. Multiplication of point group elements in (18) is 0 0 ie'at
carried out using the group multiplication table of D, _ 0 0 0 —ie
given in Table V. If {¥(ky, X;,1), #(Ky, X;, 2)} is to be a D({c,, [th=
basis for A'*1’, then a basis for (18) is ieCadiat 0 0
0 —ieCakat 0

{Wlky, X,, 1), WKy, X,,2)} +{Cpa| 0Hulky, X,, 1), #lky, X,,2)}

={h(KRy, X1, 1), Wky, X,,2), WCpuKy, X;1,1), WCyoky,X,,2)},

where the plus sign stands for the direct sum. Ina .

similar way we get

0 jettwt 0
_ : ,iCagky" t
D(WZ’({CZ,,]t})z ie'r2ew 0 0
0 0 0
0 0 e i0adkwt

ie

0
0
iTkyot
0
(19)

1708

1k ot

(20)

The bases for these irreducible representations are

{’p(kw: WZ)’ ’P(Czakm V—Vz), 7IJ(IkW) Wz); w(o‘dakW, Wz)}’

and

{4’(1‘1\,/_\7,1), d)(kA,K.,,Z), 7Mcmkz\,xwl); 7D(C2akA,K7)2)}s
respectively.

Substituting Eqs. (18), (19), and (20) into (17), there
appear elements specified by the factor exp(ik, - t) or
exp(iC, K, - t) in the 16 X16 matrix D**V ({C,, It})

TABLE X. Clebsch—Gordan coefficients of a direct product representation D1’ x D'™2) into D¢A? of the group Dij.

¥y, g, 1) ¥k, Kq, 2) ¥(Cyoky, By, 1) ¥(Cyky, Ky, 2)
Ylicy, Xy, Dy, W) VY R o 0 0
9y, X,, 1)y, ) i 0 0 ! 0 VY
¥y, Xy, 209 Gy, W) : 0 exp(— mi/ 42 i 0 0
e, X, 200 Uy, ) | 0 0 | — exple mi/4NE 0
B (Cogliy, X;, 109 (Coky, W) E 0 0 1: 173 0
¥ (Cagkiy, Xy, Vi (0gky, Wy) | 0 12 { 0 0
P(Cygky, Xy, 208 (Cogley, W) l; 0 0 i 0 exp(— mi/4W2
P(Cooky, Xy, 2)0 0 gk, Wy) :L expl(— mi/4W2 0 : 0 0

J. Math. Phys., Vol. 15, No. 10, October 1974



1709

xD'"2({C,,1t}). But we need not consider these ele-
ments, since the sum over t of these elements multi-
plied by any element of DA7({C,,t})' vanished. There-
fore we can neglect in the summation over t the rows J
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and columns containing the factor exp(ik, -t) or
exp(iC,.Ky +t) in the 16 X16 matrices of (17). Thus the
terms for which o =C,, of (17) are simplified to the
form

- —
0 0 0 0 jeat 0 0 0
0 0 0 0 0 ieC2fa’t 0 0
0 0 0 0 0 0 _ie{kA°t 0 0 0 —je iCadkp-t 0
0 0 0 0 o0 0 0 —ie'Cata’t 0 0 0 ie Cadkact
‘?’ ieiCzakatt 0 0 0 o0 0 0 0 Al et 0 0 0 » (21)
0 idefat 0 0 o 0 0 0 0 et 0 0
0 0 —iefCtat 0 0 0 0 0
0 0 0 —ie™ato 0 0 0
- .
where A is an arbitrary 8 X4 rectangular matrix. For 0 0 ekt 0 0 0
other a’s than C,, we can simplify the calculations in a .
similar way. The rows and columns to be neglected in 0 0 0 -—ie™ 0 0
the 16 X16 matrices are common to all elements of the ettt 0 0 0 A e kAt 0 ’
space group. In such a way we finally obtain for (17) the .
following matrix: 0 -—ie™'t 0 0 0 ettt
7 (23)
i B 0 0 0
0 0 0 -8 where A is an arbitrary 4 X4 matrix. The matrix (23) is
obtained by deleting the rows and the columns of the
0 Bexp(- mi/4) 0 0 8 X8 matrix in (21) which have the factor exp(iC,,k,-t),
0 0 - Bexp(~ mi/4) 0 the third and the fourth columns of 4 X4 matrix in (21).
Such deletion is done for all other elements. The rows
0 0 B 0 and the columns which should be deleted are common
0 8 0 0 to all the elements of Dit. Carrying out the summation
of (17) where matrices like (23) are substituted, the
0 0 0 Bexp(—mi/4) basis functions ¥(k,,A,,1) and ¥(k,,X,,2) are obtained.
Bexp(- i/4) 0 0 0 The remaining functions ¥(C,,k,,A,,1) and
¥(C,.k,, A,,3) are obtained by applying {C,,! 0} to
- az) ¥(k,,A,,1) and ¥(k,,A,,2), respectively.

where B=a,; +ag3 — Oz + gy + gy — g3 +aqy +0a3;)
xexp(~- 7i/4) and the a,;’s are elements of the matrix A.
In calculating (22), we have made use of the fact that
the space group Di! can be written as

D =H +{1|0H +{c,| 1 +{s}'| 7H,
where the subgroup H is
H=[{E]t}, {E]t}, {C.[t}, {C.lth {Calth, {Calt),
{Caslth, {Ca, [t1].

We may take the normalizing constant Stobe 1/V2.
Thus Table X is constructed.

It is to be noted that there is more simplified calcula-
tion to obtain Table X, First, obtain the C—G coeffi-
cients of D'’ xD'¥2’ into only the basis functions of
small representation A'*?, i,e., the part enclosed with
dotted lines in Table X; it is sufficient to calculate sim-
plified matrices. Taking the element {C,, [t} as an exam-
ple again, the matrix (21) is simplified to

J. Math. Phys., Vol. 15, No. 10, October 1974
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A general method for obtaining Clebsch-Gordan
coefficients of finite groups. 11. Extension to antiunitary
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A general method is presented for obtaining Clebsch~-Gordan coefficients, in a matrix form, of finite
antiunitary groups, as a direct extension of a general method for unitary groups. It is shown that
there is an essential difference as well as apparent similarities between two methods for unitary and

antiunitary groups.

1. INTRODUCTION

In a previous paper,! the author presented a general
method for obtaining Clebsch-Gordan (or CG) coeffi-
cients of finite unitary groups and applied it to three
examples. In the paper the starting point of our dis-
cussion was that a matrix, Eq. (3) of (I),

ZD(a )(,’,)BD(a )(,},)1'

~
is a scalar matrix by Schur’s lemma. From this we
obtained a theorem by means of which a matrix connec-
ting two equivalent irreducible representations of uni-
tary groups can be found. And by extending the theorem
to reducible representations, we reached at a general
method for obtaining CG coefficients in a matrix form.

For antiunitary groups a theorem corresponding to
Schur’s lemma for unitary groups does not hold; that is,
for any irreducible corepresentation a matrix a
satisfying

aD(u) =D(u)a, aD(a)=D(a)a*

is not necessarily a scalar matrix, where « and a are
unitary and antiunitary elements, respectively. Never-
theless, taking account of similarity relationships [(2)
below] characteristic to antiunitary groups, the method
will be extended so that CG coefficients for antiunitary
groups may be obtained in a matrix form similar to the
case of unitary groups. As in (I), every corepresenta-
tion appearing in this paper is assumed to consist of
unitary matrices.

2. A GENERAL METHOD FOR OBTAINING
CLEBSCH-GORDAN COEFFICIENTS OF
ANTIUNITARY GROUPS

Corepresentation D of antiunitary groups are charac-
terized by the multiplication rules

D(u)D(u’) =D(un’), D(u)D(a)=D{ua),
D{a)D*(u)=D(au), D{(a)D*(a’)=D(aa’);

and two equivalent corepresentations D, D’ are con-
nected by

D(u) = a™D'(uw)a, D(a)=a'D'(a)a*, (2)

(1)

where @ is a unitary matrix.? In Eqs. (1) and (2) the
elements #, #’ are unitary and a, a’ are antiunitary. If,
in (2), D’ is a product corepresentation and D is a
corresponding completely reduced corepresentation,
then o is a matrix whose elements are CG coefficients.
Consider a matrix

F=3, D'(u)ADYu) + 2, D'(a)A*D%a)
ucC H H

ac ap,

=£pD'(u)AD(u'1) +a2 D'(a)A*D*(a™), (3

where H is the unitary subgroup of the antiunitary group
under consideration, a, is an antiunitary coset represen-
tative, and A is an arbitrary matrix. Then we have

FD{u') = ; D'(WAD(uu’) + ; D'{(a)A*D*(au’)
= 73 DuADW") + 3, D'uw'alA*D¥a’)
=D"(u')F,

and
FD(a’) =D’(a’)[%:'D’*(a)AD(a") +;D'*(u)A*D*(u")]

=D’(a’)F*-

That is, the matrix F satisfies the same equations (2)
as a. Accordingly CG coefficients of antiunitary groups
are obtained by orthonormalizing the columns of the
matrix F as in the case of unitary groups.

TABLE L. The irreducible corepresentations of antiunitary double point group D,(D,).

E C, E C, Coy 6C,
Dy (1) (1) (1) (1) ) (1) (1)
D, (1) (v (v (1) (-1 (1
D (1 0) (—1 0) <1 0) (—1 0) (1 0) (0—-1)
3 0 1 0-1 0 1 0-1 0-1 1 0
1 0 0 O i 0 0 0 -1 0 0 O -i 0 0 O 0-1 0 O 0 0 0-1
D, 0o 1 0 0 0 —-¢ 0 0 0-1 0 0 0 ¢ 0 0 1 0 0 0 0 0-=¢ 0
4 0 0 1 0 0 0 ¢ 0 0 0-1 0 0 0~-¢ 0 0 0 0-1 0 1 0 0
0 0 0 1 0 0 0 -7 0 0 0-1 0 0 0 ¢ 0 0 1 ¢ i 0 0 0
1710 Journal of Mathematical Physics, Vol. 15, No. 10, October 1974 Copyright © 1974 American Institute of Physics 1710
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TABLE IIL. Clebsch—Gordan coefficients of Dyx Dy for the

group D,(D,) with respect to bases which transform according
to Table I.

w(Dy) &(Dy) W(Dy) &(D,)
¥ Dy, 1) ¢p(Dy, 1) 142 iN2 0 0
D3, 1) $(Dy, 2) 0 0 1N2 inNz2
W D;, 2)p(Dg, 1) 0 0 -1N2  iNZ
¥ Ds, 2) (D, 2) 1N2 -iN2Z 0 0
If we put
F, suEZH D'(w)AD(u™), (4)
we can write (3) as
F=F,+D(a,)F*D'(a,). (5)

This equation simplifies calculation of F when we apply
this method to practical problems. And also calculation
of F, can be further simplified when H has a subgroup
[see Eq. (14) in (D)].

3. AN EXAMPLE

Let us apply the above-mentioned method to a practi-
cal problems. We take an antiunitary double point group
D(D,)=C, +6(D, ~D,), 6 being time inversion operator.
The group D,(D,) can be written as

D,(D,)=(E, C;, E,C;) +C,(E,C,,E, )
+0C,[(E,C,, E,C,) +Cy(E, Cy, E, T,)].
To know the irreducible corepresentations of D(D,), it

is suffic_ient only to show matrices for the elements
E, C,, E, C,, C,,, and 6C,, as listed in Table 1.

Consider a product corepresentation D, XD, which is
reducible to 2D, +2D,. The matrix F, of (4) is, in this
case,

a, a, 0 O
0 0 ay ax
F, = 0 0 ay ay ’
a; a, 000
where a,; are elements of an arbitrary matrix A. The
symbol ~ means that a common numerical factor to all

the elements of the matrix is neglected. Thus Eq. (5)
becomes

a, a;; 0 0
F= 0 0 Az3 Aoy
0 0 ay asz

0 0

A4 Q42
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0o 0o o 1\ far a0 o\ /1 0 0 o
+ 0 0 -1 0 0 0 af aX 01 00
0-1 0 0 0 0 o anfJYo 01 0
1 0 0o of \at a0 0/ \o 0 0 1
ay tat an+ak 0 0
B 0 0 Gy —AFs (g — a3y
- 0 0 Aoy — AYy  Qas—any
a, +taf, aptal 0 0

We can arbitrarily choose four quantities a,, +a¥,
ay, +ak, az —als, and a,, —ad, so long as unitary condi-
tions for F are satisfied. One choice is

a5 +a:1 =1/V2, a, +ak= i/V2,

2P 'a;:a =1/V2, az - 0;4 =i/V2.

In such a way we obtain Table II for CG coefficients of
D, %D, for the group D(D,).

4. CONCLUSION

Equation (3) for antiunitary groups is a direct exten-
sion of Eq. (12) in (I) for unitary groups. But we must
notice that there is an essential difference as well as
the apparent similarity of these equations. Whereas the
matrix

Z~ D(a)(,r)AD(a)(,r)T

r
for an irreducible representation D'® of a unitary group
is scalar, the matrix

Z_,‘D“")(u)AD(“)(u)T +;D(°‘)(a)A*D(°‘)(a)t

for an irreducible corepresentation D'® of an antiunitary
group is not necessarily a scalar matrix.

The method presented in this paper can be applied to
find CG coefficients for antiunitary space groups also.
The conservation law of the reduced wave vectors will
simplify the calculations of the matrix (3) as in the case
of unitary groups [see Sec. 5 of (I)].
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We study a multicomponent version of the “4-~B” model of Widom and Rowlinson, generalized in
a symmetric way: There is an infinite repulsive interaction between any two unlike particles. We
consider both lattice and continuum versions of the model and show that the ‘“demixing” transition
occurs for any finite number M of components, all having the same activity. No conclusion can be
drawn about this transition in the limit M — . It is shown, however, that another transition, in
which the density is greater on one of the sublattices, appears at a finite value of M which persists
for all larger M at any fixed value of the activity. In the limit M —w, z -0, Mz ={, const, this
system apparently becomes ‘“‘equivalent” to a one-component system with activity [ in which there is
an exclusion for occupancy of nearest neighbor sites. The latter transition then becomes the “hard

square” transition.

I. INTRODUCTION

Widom and Rowlinson introduced a model® for fluid
systems which has been quite fruitful. The model postu-
lated two types of particles (A and B), each of which had
no interaction with other molecules of the same kind.
Between unlike molecules, however, there was an in-
finite repulsive interaction. Widom and Rowlinson dis-
cussed the thermodynamics and symmetry of the de-
mixing transition predicted to occur at high activities,
and also showed the equivalence of the two-component
model with a one-component model having many-body
forces.

Lebowitz and Gallavotti® constructed a lattice version
of the A—B model in which the A—B interaction was
+ o« for separations of one (or zero) lattice units, and
vanished otherwise. (This was their Model 1; other
variations were also discussed.) The Peierls’ contour
argument® was employed to prove rigorously that the
lattice version of the A—B model does in fact have a
demixing transition.

Ruelle? then extended the proof to the original con-
tinuum model, where the only nonzero interaction was
an infinite repulsion if the separation between an A
particle and a B particle became less than some fixed
distance R. Lebowitz and Lieb® then showed that Ruelle’s
proof could be modified to cover the continuum case with
a soft A—B repulsion, at sufficiently low temperature.
Physically these A—B systems are analogous to the
ferromagnetic transition in Ising spin systems and
many results (e.g., inequalities) proven for the latter
can be carried over to the former.

In theories of liquid crystals it is often convenient to
identify the various possible orientations of the asym-
metric molecules with the components of a mixture. ®
As far as the elongated cores of the molecules are con-
cerned, the interactions between the “components” are
repulsive and greater (in the sense of the excluded
covolume of two molecules) for molecules with more
dissimilar orientations. We have thus been led to con-
sider a caricature of this situation in the form of a
multicomponent Widom—Rowlinson model. The number
M of components is arbitrary; particles interact only
with dissimilar particles, and then repulsively but sym-
metrically: the identity of the unlike species is unim-

1712 Journal of Mathematical Physics, Vol. 15, No. 10, October 1974

portant. To produce a more realistic model for liquid
crystals it would be necessary for the repulsive inter-
action to vary with some appropriate measure of the
difference in orientations of the molecules.

For our purpose the various species will simply be
numbered 1, 2,...,M. We will primarily be concerned
with the lattice version of the model, with infinite re-
pulsion between unlike molecules occupying neighboring
sites. For simplicity we explicitly discuss the two-di-
mensional case. Some observations about the continuum
version will also be offered.

We will first show that the “demixing” transition of
Widom and Rowlinson persists for any finite number of
components, for either the lattice or the continuum ver-
sion. Not surprisingly, our upper bound on the common
critical activity of the components tends to infinity as
M — oo,

For the lattice model, however, there is another
transition that appears for large but finite M and re-
mains at finite activities as M — «. In this transition,
the symmetry between the two sublattices is broken,
one of them having a higher density of particles. We
call this the crystal (or “hard square”) transition due to
its apparent relationship with the phase transition of the
hard square lattice gas.” This transition has no analog
in the continuum system—at least none that is demon-
strable at the present time.

A related but not equivalent model is the M-state
Potts model. ® In its simplest form the model postulates
M states for each lattice site, nearest neighbor inter-
actions being zero for like states and W #0 for unlike
neighboring states. The “ferromagnetic” case W> 0
has been most studied; the expected “Curie point” in
zero field has been located as the self-dual temperature
of the dual transformation. The ordered phases of the
Potts model at low temperature are probably analogous
to the almost-one-component phases of the present
model at high activity, but the absence of a vacuum state
in the former, i.e., empty sites which do not interact
with any component, prevents an exact isomorphism,

Il. THE MODELS

In the following two sections we will describe the de-

Copyright © 1974 American Institute of Physics 1712
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mixing transition and the crystal transition. It is first
useful to establish some general terms which will be
used in all cases, lattice or continuum and for either
transition in the lattice case.

The interaction potential between a particle of type i
and one of type j, at a separation r, is given by

0 for lv| >R,
i(r) = {+°o for |r| <R, (12)
fori+j, 1<i, j<M. Fori=j we have
0 forrz0
- ! 1o
(p”(r) {+°o for r=0. (1b)

In the continuum case R is the “hard core diameter”
between unlike particles; in the nearest neighbor lattice
case R is simply the lattice spacing.

For any configuration of particles there is a unique
decomposition of the particles into groups which we call
clusters: Two particles belong to the same cluster if
the particle configuration requives the two to be of the
same type. Equivalently, given the set of particle loca-
tions, each cluster contains particles all of the same
type.

In each case to be discussed there is a particular way
of defining an “outer contour piece, ” y. Once that is
done we will denote by boundary cluster of y a cluster
containing a particle interior to v whose center is no
farther than R from v.

111. DEMIXING TRANSITION

A. Lattice model

We consider a rectangular region A of the two-dimen-
sional square lattice. Each site can be occupied by any
of the M components—all of which have the same acti-
vity 2. According to Egs. (1), neighboring occupied
sites must carry the same type of particle. We repre-
sent the particles as squares whose centers reside at
the centers of the sites of the square lattice. If the
lattice is completely filled, the corners of these squares
define the dual lattice.

We employ the Peierls argument to show that there is
an activity z/(M) such that a phase transition occurs for
some z< z’'(M). The technique is to impose a homogen-
eous boundary condition—say a band of particles of type
1 all around the perimeter of A—and show that this
boundary condition prejudices the equilibrium state
throughout A. Specifically, we can show that for some
z'(M), the total density of all components j#1 is a
decreasing function of z, whereas we know the total
density is an increasing function of z.

The proof is virtually already done in Ref. 2. On re-
reading that proof (for Model 1), wherever “A” is men-
tioned, we read “component-1"; wherever “B” occurs,
we read “other-than~component-1.”

The only change is in the definition of a “cluster” and
the multiplicity of the configuration transformation.
“Cluster” is defined in the preceding section; it is the
same as in Ref., 2 except that the translation of “B” to
“other-than-component-1” is not quite accurate. The
bound on the multiplicity, m'S', in Ref. 2 for the present
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model becomes M?' ¢!, Each boundary cluster after the
transformation is composed wholly of component-1
particles, whereas prior to the transformation it was of
some other component. Clearly there are no more than
M*' ¢! boundary clusters of outer boundary G.

This dependence of the multiplicity on M (see Eq.
(3.5), Ref. 2) means that z’ depends on M and in fact
tends to infinity as M — =, ° We cannot therefore, make
any statement about a phase transition for the limiting
case M — o,

B. Continuum model

In the continuous case again there is very little that
needs to be changed from the two component proof of
Ruelle.* Again, we reread Ruelle’s proof, inserting
“other-than-component-1” wherever “B” occurs. There
is a change needed in the configuration transformation,
however. In the two component case, to “remove” an
outer contour piece it suffices to simply interchange
interior A and B particles. In the present case we modi-
fy only particles in boundary clusters. We need the ob-
servation that if outer piece y has length ! (in units of
“little” square edge length d), then the number of bound-
ary clusters of y cannot exceed 1/3.

The change in the contour transformation of Ref. 4 is
in its step (a) which is changed to read: “All particles
in any boundary cluster of y are changed to component
1.” As in the lattice case this introduces a multiplicity
to the transformation and changes the estimate of the
probability p(y) of outer piece y to

() <M'3 exp(-1d°2/2).

This probability replaces Eq. (2) of Ref. 4 in the rest
of the development. We can then show that if the activity
z is sufficiently high (depending on M) the expectation
value of the density of other-than-component-1 particles
is strictly less than that of component 1. Again, how-
ever, no conclusion can be drawn for the limiting case
M — o,

1V. CRYSTAL TRANSITION

We turn now to the “new” transition for the multicom-
ponent model. In the previous section we discussed the
demixing transition induced by high activity and the
packing requirement that particles be of the same type
in order to achieve high densities. The “driving force”
behind the present transition is somewhat different. The
idea is that for modest activities and large M the chance
is small that nearest neighbor sites will be occupied.
Instead the particles will preferentially occupy one of the
sublattices, since when only one sublattice is occupied
there is no restriction on the species occupying any
site, with a subsequent gain in entropy. In this way the
“ordered” state of this model is similar to that of the
nearest neighbor exclusion problem on the square lattice.
The latter system has a well-known transition associated
with sublattice ordering.” It must be shown, however,
that this transition does actually occur at a bounded
activity for finite M and persists in some well-defined
sense as M — «. We also suspect (for fixed large M) an
upper activity limit on the stability of this sublattice
ordering.
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We use the technique employed by Dobrushin™ to
prove the nonuniqueness of the equilibrium state for the
nearest neighbor exclusion problem. Specifically, we
shall show that for any positive activity z there is an
M, =M,(z) such that the multicomponent lattice model
with at least M, components has the crystal transition.
The criterion is that M,/z* be sufficiently large if z=> 1
or that M z be sufficiently large if z<1. The latter case
has a limit which we believe represents the hard square
system: M — e, 2—0, Mz=¢ =activity of the hard .
square gas. The existence and identification of this limit
can be proven explicitly in one dimension. (There is, of
course, no phase transition in one dimension.) Com-
bining this result with that of the previous section we
conclude that the multicomponent model with large but
finite number of components has two quite different or-
dered phases at finite activities. We do not have a very
useful estimate of the minimum value of M for which
both may be observed.

A. Definitions

To facilitate the proof it is convenient to introduce the
following definitions, which are illustrated in Fig. 1.

1. Contour segments: “bonds” of the square lattice,
dual to the lattice of sites, separating two sites which
are both empty or both occupied. (If both are occupied,
then both particles must be of the same type. ) This de-
finition differs from that of Peierls (for the ferromag-
netic Ising model) but is the same as used by Dobrushin™
for the antiferromagnetic Ising model and the hard
square lattice gas.

2. Contour T': union of all contour segments, con-
sisting of various connected components.

3. Pieces y,: smallest set of connected components of
T, such that if two connected components are separated
by a distance of no more than R (= lattice spacing) they
belong to the same piece. I' is then the union of the dis-
joint pieces y,,...,v,.

4. Quter piece y: one of the pieces such that there is
a path from the boundary reaching a segment of y with-
out crossing I,

5. Interior site x: a lattice site such that a path from
the boundary crosses y an odd number of times before
reaching x. Otherwise a site is exterior to y.

6. Boundary conditions, with checkerboard coloring
of square lattice with black and white squares: white
boundary condition means black squares on outer fwo
rows and columns are vacant. White squares on very
outer-most rows and columns are populated arbitrarily,
i.e. each site contains any one of the M species. Black
boundary condition: white squares are vacant on two
outer rows and columns and black squares on very
outer-most rows and columns are populated arbitrarily.
See the comment below in subsection B about these
boundary conditions.

7. Bottom segment of piece y: a horizontal segment
adjacent to and beneath an interior site of ¥. Any other
horizontal segment is a top segment.

8. Distinguished sites of a configuration X producing
contour I" with outer piece y:
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a. A-site (annihilation): interior occupied site beneath
a top segment.

b. L-site (liberated): an interior vacant site above a
bottom segment (L,-site); or an exterior occupied
site adjacent to a bottom segment or a vertical seg-
ment of y (L,-site).

c. G-site (generator): interior occupied site adjacent
to a bottom or vertical segment, but not adjacent to
a top segment (G,-site); or exterior occupied site
adjacent to a top segment but not adjacent to a bot-
tom or vertical segment (G,-site). Note: According-
ly, every occupied site adjacent to a contour seg-
ment has exactly one kind of distinguished site de-
signation. An interior occupied site is an A-site if
adjacent to a top segment and is otherwise a G,-site.
An exterior occupied site is an L,-site if adjacent to
a bottom or vertical segment and is otherwise a
G,-site.

9. Cluster and boundary cluster: as defined in Sec. II.

In connection with these definitions we will need the
following two observations, which we state as lemmas.

Lemma 1: Any A-site or L,-site of an outer piece y
belongs to some boundary cluster with two or more
particles.

Proof: By definition a particle on either type of site is
adjacent to a contour segment which must have an oc- -
cupied site on the other side.

3 [ 2 I 30 |2 |
4 3 [ 3 2| @ |2
3|3 R 2 3
2 2 @ ey
2! |4 2
| 2l2]2 I
2 2 | 2
3| |4 I 4 3
I (] 4 3
2| |4 2 [ 2 4
| @ 4| |3 4 I
2 2 ® I 4
4 I 3 3 2 2
2 ! 2| |3 3 4 I

FIG. 1. A configuration whose contour consists of three
pieces, two of which are outer pieces. The heaviest lines are
the contour segments of one piece y;, consisting of two con-
nected components. The numerals represent particle illustra-
tion. Distinguished sites associated with outer piece y; are

-identified as follows: A-site particles are x'd, G-site parti-

cles are circled, and L-sites are shaded. The particle of type
4 at the center of the “square doughnut” portion enclosed by v,
is exterior to y;. The particle of type 1 contained in the small
piece enclosed by v, is interior to ¥;. The piece v, has five
boundary clusters; each must contain at least one G-site, ac-
cording to Lemma 2, It should be noticed that the sites of one
sublattice are vacant on the two outer rows and columns.
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Lemma 2: Given an outer piece y, one of whose in-
terior sites belongs to a boundary cluster C, the cluster
C must contain at least one G-site.

Proof: Regarding only the cluster C, we locate its
highest site or highest set of contiguous sites. (In case
of ties any highest site or highest set of contiguous sites
will do. ) If there is a highest single site, the site below
it must be occupied and the other three neighboring
sites empty. Hence the site in question must be either:
(a) interior, adjacent to a bottom segment and not to a
top segment, or (b) exterior, adjacent to a top segment
and not to a bottom or vertical segment. In the first case
the site is a G,-site, and in the second case it is a G, -
site. If there is not a highest single site we consider the
highest set of contiguous sites. The site above each must
be vacant and alternate members of the set of contiguous
sites must be interior sites, and adjacent to vertical
contour segments. Each such interior site is a G,-site.

B. Configuration transformation

We now define a one-to-many transformation among
the allowed configurations on A. With configuration X
producing contour I' having outer piece y we associate
a class of X* of configurations, in three steps:

a. particles at A-sites are annihilated;

b. all remaining particles at sites interior to y are dis-
placed upward by one unit;

c. L-sites are arbitrarily populated.

We notice that the inverse transformation is well de-
fined by virtue of the original configurations at the G-
sites and Lemmas 1 and 2. (The G,-site particles have
been displaced upward one unit by step b.) This means
that for any configurations Y and X producing the same
outer piece y, Y*nX*=¢ if ¥ #X. In the third step
(arbitrary population of L-sites) alterations are made
in the occupancy of some sites exterior to y (the L,-
sites). According to our definitions these sites do not
belong to boundary clusters of any different piece 3/,
since that would require y’ to be within one lattice
spacing of ¥ and hence united into one piece. The bound-
ary condition consists of vacant sites and thus an L,-
site is never part of the boundary condition.

Figure 2 shows the class of configurations produced
by this transformation from the configuration shown in
Fig. 1.

C. Probability of outer contour piece

We can now calculate a bound on the grand canonical
probability of an outer piece y, in the following steps.

1. Length. If ¥ contains ! segments and ¢ connected
components, it can be traversed by a k-step lattice
walk, where k<I+2(c—-1). Since I > 4c we have k <31/2.

2. Number of L-sites. Let n, and n, denote the num-
ber of vertical and horizontal segments, respectively,
of y. Let ny,, ny, n, denote the number of L,-sites,
L,-sites, L-sites, respectively. Half of the horizontal
segments produce an L-site (each of those at the bottom),
son, > n,/221/4 if n,2n,. Notice that an L-site can-
not thereby by counted twice. If, however n,>n,, we
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first notice that each vertical segment is followed (in a
circuit around a connected component of y) either (a) by
another vertical segment or (b) by a horizontal segment.
In case (a) one of the two vertical segments must pro-
duce an L,-site, while in case (b) the horizontal segment
produces “half” of an L-site (it might be a top segment,
but there must be as many bottom segments as top seg-
ments). By this method of counting it is possible for
some L,-sites to be counted twice, so we can only con-
clude that n, >n,/4>1/8. Regardless of the ratio n,/n,
we can always assert that n, >1/8.

3. Number of A-sites. Since A-sites occur only
beneath top segments, which must be equaled in number
by bottom segments, we clearly know that the number
of A-sites, n,, cannot exceed /2.

4. Probability of outer piece y. Let Z denote the
partition function (with all M components having the
same activity z), let Z(y) denote the partition function
restricted to configurations X producing a contour with
outer piece y, and let Z « denote the sum over con-
figurations in class X* derived from configuration X by
the transformation defined above. We have then that the
probability p(y) of outer piece vy is

pY)=2(r)/Z

(
< Zxoy#" (2)
ZXD‘YZX*

Here N(X) is the total number of particles present in
configuration X. As pointed out previously the inverse
transformation X* — X is unique so there is no over-
counting. The L-sites are independent and in Z,* each
contributes a factor 1+ Mz; in the configuration X each
L,-site contributed a factor z while the L -sites con-
tributed the factor 1. Finally each A-site had a factor
z in X and has a factor 1 in Z,x.

N
NiNvINEN
[\

*
N
N
*
(¢ ]

%

2 T2l 1%] "% [* 1] la

2 I 2 3 3 4 |

FIG. 2. The effect of the configuration transformation on the
configuration shown in Fig. 1. Sites labeled * are arbitrarily
occupied by any of the species. Given the outer contour v,
here shown dotted, the configuration before the transformation
had to be the one shown in Fig. 1; it can be reconstructed
from the G-sites.
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Thus we have

ZVE fz x=2"P12" /(14 M2)"L
<(1+Mz)*
<(Mz)?*/® forz<l1. (3a)

On the other hand, if z= 1 we have

Z¥ND /7 x<2"0 2" /(1 + Mz)"T
sM L Z"
sMe gt/
=(M/z%)t/® (3b)

According to Eq. (2) the right-hand sides of Eq. (3)
are also upper bounds on p(y).

for z=1.

D. Nonuniqueness

The standard arguments will be used to show that for
white boundary conditions the probability that a black
square is occupied may be made arbitrarily small, by
choosing sufficiently large values of M. However, to
complete the demonstration of nonuniqueness we must
show that the fotal density is bounded below for fixed
z as M — «,

Imagine the lattice A paved with “Red Cross symbols”
of five sites, and focus on one (K) consisting of the site
(x,v) and the four neighboring sites (x+1,y) and (x, y+1).

Lemma 3: Fov any configuration on A\ K, the ex-
pected number of particles n, in K is no less than
Mz/(1+Mz).

Proof: For any configuration on A\ K, the partition
function on K has the form

5
Ep=1+)7 a2}
i=1
where a, >0, and the expected number of particles on
K isn,=z(91nf,/9z). Now by algebra we show

n,za,2/(1+a,2)za*/(1+ az)
K 1 1

for any o sa,. We can always take @ =M [from the con-
figuration with (x, y) occupied and the other four sites
empty]. Since this holds for any configuration A\ K we
know that in K the average density must not be less than
(1/5)Mz/(1+Mz). The same reasoning applies to each
of the other “Red Cross symbols” paving A and so we
obtain the lower bound on the total density p,,

.= (1/5)Mz/(1+Mz). (4)

Now with white boundary conditions if a black square
is occupied it must be enclosed in some outer contour
piece y. Equations (3) give upper bounds on the probabil-
ity p(y). There are no more than (k/4)® 3*2 pieces of
length ! around any given site, where 2=31/2 is the up-
per bound on the length of a lattice walk circumnaviga-
ting v. This means that the probability p, that a black
site is occupied is bounded above:

L ey Y4-3y+y%)
by = 36273’ B (5)

for y<1. Here j=k/2 and y=9/(Mz)*/¢ for z< 1, while
y=9(z*/M)*® for z>1.
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To demonstrate the influence of the white boundary
conditions we must show that p,<p,/2 for sufficiently
large M. For any z>0, Egs. (4) and (5), together with
y<1, yield a minimum value M, for which p,<p,/2 is
satisfied. For z<1 the requirement is that the product
M,z be sufficiently large, while for z =1 the requirement
is that M,/z* be sufficiently large. Numerically Eqs.

(4) and (5) are not very helpful for determining the mini-
mum M, for which this transition would be observed.
(They show that M, =27% is sufficiently large!)

It seems likely, but is not proven, that for fixed large
M and increasing activity z, the “hard square” sublattice
ordering will break down before the demixing phase sep-
aration occurs. That is; we expect the “phase diagram”
to appear as shown schematically in Fig. 3. We have
actually proven only that phase transition lines lie below
the “Crystal” region and to the left of the “Demixing”
region. If these phase transition lines have the same
general shape as shown in Fig. 3, then the above as-
sertion would be correct. With increasing activity, then,
such a system would undergo three phase transitions.

E. The "’hard square’’ limit

The case z<1 is particularly interesting. In this case
the variables M and z enter Eqs. (4) and (5) only as the
product Mz. This is consistent with the statement that
the present model becomes isomorphic to the hard
square lattice gas in the limit M - », 2—0, Mz=¢
=activity of the one-component hard square lattice gas.

To be more precise we believe that in the above limit
the thermodynamic properties of the system as well as
its “equilibrium measure” defined on the set of “equiva-
lence classes of configurations” 4 becomes the same as
for the hard square system. Two configurations X and Y
‘belong to the same equivalence class X ,Zf if they have
the same set of occupied sites, i.e., if they differ only
by the labeling of the species at each occupied site. To
see how such an isomorphism would come about we note

=
2
=4
Q
S Crystal
(=8
£
o
&
)
o
'g Disordered
3 Demixing
z
2 1

Activity z

FIG. 3 (“Phase Diagram’). Shown schematically are the lines
proven to lie within regions belonging to the two types of
ordered phases: the crystal (¢“hard square’”} phase and the
“demixed” phases of predominantly one component. The actual
extent of the incursion of the disordered region into these two
areas is not known.
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first that a “fully restricted system” of M components
in which no adjacent sites can be occupied, i.e., in
which Eq. (1a) hold for all ¢ and j, is obviously isomor-
phic, in the sense defined above to the one-component
hard square system with fugacity ¢=Mz. It seems rea-
sonable to expect that in the limit M — o, 2—+0, Mz=¢,
the multicomponent Widom—Rowlinson model considered
in this paper has the same property. We give an ex-
plicit computation of the thermodynamic properties for

a one-dimensional system in the Appendix.

APPENDIX: ONE-DIMENSIONAL LATTICE SYSTEMS

Consider a one-dimensional lattice containing L sites,
L = 3, with periodic boundary conditions. (Similar re-
sults hold for other boundary conditions.) Let Z (z,M;L)
a=0,1,2, be the partition function for the “hard rod”
system (M =1), the fully restricted system, and the
Widom—Rowlinson model, considered in this paper,
respectively. In all cases

M+l
Z (2, M;LY=tr Tt =23 \(a,z, M)
k=1
where T, is the transfer matrix. T is a symmetric
matrix of dimensionality M + 1 (with M=1 for o =0) and

ra,z,M) are its eigenvalues. The forms of these
matrices are

y (M+1D)XM+1)

(M +1)X(M+1)
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with eigenvalues
Ay 200, 2)=[1£(1+ 42)"/2]/2,
Ay ,2(1, 2, M)
=[1(1+4M2y12)/2, A (1,2,M)=0, k=3,...,M+1,
Npa(2, 2, M) = {1+ z[(1+2)
+4M =1/,
B=3,...,M+1.

(2,2, M)=2z,

In the limit z— 0, M— o, Mz=¢, we clearly have
Z (z,M;L)—~ Z(t,L) for a=1, 2 (and we have omitted
the M from Z). The same thing happens if we first take
the thermodynamic limit L — « of the pressure L™ In Z
and then take the limit on 2z and M. The isomorphism of
the equilibrium measures (as defined at the end of the
paper) can presumably also be shown readily for the one-
dimensional system and probably remains valid also in
higher dimensions.
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The system with Hamiltonian p?+x* is discussed. An approximation scheme is given for matrices x
and p that satisfy the canonical commutation relation and diagonalize the Hamiltonian.

I. INTRODUCTION
The Hamiltonian to be treated is
H=p%+x%

We look for a canonical pair [p,x]=—1i such that H is
diagonal. Our scheme is the following. We assume that
the most important matrix elements of x and p are those
of the form (n|x|n¥1) and (n|pin=x1). In our lowest ap-
proximation we treat only these matrix elements and we
find these in the way that comes as close as possible to
making H diagonal and the operators x and p a canonical
pair. We treat three types of equations: (1) the diagonal
commutator equation C,,=(px — xp),,, (2) the off-diagonal
commutator equations C,, = (px — xp),, with a=b, (3) the
off-diagonal Hamiltonian equations H,, with a#5.

We find the approximation leads to a double expansion
of the matrix elements x,,, p,,. The first dimension of
the expansion is the difference a —b. In this expansion
we find that x,, =A,_,(a+b)"/% p =B, ,(a+b)?/, There
is a second expansion involving terms of lower order in
(a+ b). We have not explored these terms. We assume
that x will have the form A _(a+b)'/*+4__ (a+b)?/®
++++. We have found empirically that A _, and B, are
very rapidly decreasing functions of a—b.

In Sec. II the lowest approximation is carried out. In
the Appendix the expansions of the commutator and
Hamiltonian to leading order in (a + b) are derived.
These results are used in Sec. III to give the equations
for the second, third, and fourth approximations. The
solutions to these equations found by a computer are
reported in this section. Section IV is our evaluation of
the status of our work.

Anharmonic oscillators of the present type are of
interest because they are the simplest examples of non-
linear problems in either classical or quantum me-
chanics. They serve as models in a restricted way for
field theories and many body problems. They have been
treated by a variety of methods since the earliest days
of quantum mechanics.® Roughly speaking, methods can
be divided up into a number of types:

1. Those methods which strive for numerical pre-
cision. 2 The principal technique is to truncate the
problem and diagonalize a large but finite matrix. A
variety of styles of truncation have been employed.
These methods converge.

II. Development of the perturbation series and efforts
to reorder it.? The perturbation series is divergent but
rearrangements such as the Padé approximates converge
and also give good numerical results.

III. Approaches like this one which attempt to deter-
mine the most significant matrix element of the canoni-
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cal operators and their dependence on the matrix in-
dices. * The WKB method probably fits most naturally
with this class of approximation.

Il. THE FIRST APPROXIMATION EQUATIONS

In this section the lowest approximation is carried out
in a direct way. The equations of this approximation are
rederived in the next section using the more formal
procedures of the Appendix.

We assume that p,, and x,, are zero if a—b+1. The
formulas

xab= Eaéa.bd + £a+15a.b-l’
PPy == naéa.bu + Trm-léa -1

include this selection rule. The real symmetric form of
x and imaginary antisymmetric form for p follow from
time reversal invariance. The commutator C and the
Hamiltonian H are found to be

Cop=- i( BTy = Ega M) gp+ 2 100 — £,M4)04,5
F(Eguaaur = Ea+1”¢+z)5a+z,b]’

Hpy=8,38,28,.18000-4,0
(= My Erpbpa B+ Epurdy + Eamr s’ + £ baban)Bans
GRS SUE Rl 0 S R0 L
(=TTt Eigaaﬁyz + £Z+1'Ea+2 + Em1£:+z
+ Eprbating)Opz,s

+ saa»l Eu#2£a¢3€ao464+4. b

We focus our attention on the diagonal commutator
equation

£¢|+1Wa+1 - Eaﬂa = %
and the first off-diagonal Hamiltonian equation
= MyTas  Egbgorbon + Eubay + ExEan + 016 g =0,
The commutator equation can be summed to give
Tk, =30

Within the scope of our approximation we neglect the
differences between 7, and 7,_, and between £ _,, Eir o
The equations of the first approximation become

48, =72,

£¢+1‘
ﬂasa=%a,

The solution is
£,=32a-10/3, 1 =3(2a-1)%/3,

The —1 is included to make our later results neater.
Since we will only work to leading order in (2a — 1)'/2 or
(2a — 1)?/3 the change by 1 is not important.

Within this approximation the energy or diagonal

Copyright © 1974 American Institute of Physics 1718
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matrix element of the Hamiltonian is given by
Ea :Haa = 2112@01/2 + 65:#1/2
=[2(3) + 6(3)*] (2a)*/*

— %(2‘1)4/3_

11, EQUATIONS FOR THE SECOND, THIRD,
AND FOURTH APPROXIMATIONS

In this section we use the expressions in the Appendix
to find the equations of the next three orders of
approximation.

In the second approximation we include all terms with
A,, A,, B,, and B,. The equations we solve are C,, =~1,
Cc ..,=0,H ,=0, H_ ,=0. From the Appendix the

aa+2 aa+ aa+d A N
diagonal commutator equation is

—2 3% (a- $)B, A, =1
$=a-3
or
- 2i(3A,B,+A,B, -B_ A | —3B_A_)=—1;
using the symmetry of the A’s and B’s this becomes
34,B,+A,B, - §=0.
Since &, and 7, of Sec. II are related to 4, and B, by
£, =A,(2a- 1'%, 1 =B,(2a-10'3,
the earlier equation
E,m, =30
is equivalent to
AB,(2a-1)=1a
or
AB =%
the second order equation with A,=B,=0.
The first off-diagonal commutator equation is
2565~ 4a+2)~24]B, (A, ,=0.
The appropriate limits on the sum are a-1<A <a+1,
which gives
-TBA_-B_A +5B A, =0
or
5B A, —A,B, +TB,A;=0.

The two Hamiltonian equations are H,,,,=0, H,, ,=0.
If we substitute in from the Appendix, the required

terms are

H

a.a-2

. ==(2a+2)*37; B, B

-s“s-a-2

+{2a+ 2)4/SEA¢_QAq-rAr-sAs-a-2{
H

a,a+d

- (2a + 4)4132'3"-333-«—4
+(2a+ 4 TA,_ALAL A
The remaining problem is to determine the range of s
in the first sum and of ¢, 7, and s in the second sum so

that only A A, and B, and B, occur. In this order it is
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simple enough to do this by inspection. We find that
—(2a+2)¥3(B,B_,+B_B_, +B_;B,)
+(2a+2)*/%(4A3A_, + 12A%A A,

+124_A AL+ 124 A A)),

- (2a+4Y¥B_B_,+B_B.,)

+{2a + 4)V3(A+ 124%4 A+ 12A24_ A, + 6A% A2).

H

a,a+2 =

H, s=

The equations of the second approximation are
AB, +3A,B, - ;=0,
5A,B,-A,B, +TA,B, =0,
~B%+2B,B,+4A1+ 12434+ 12A2A%2 + 124,A3=0,
~2B,B,+A}+ 12A3A,+ 642A% + 124 A3=0.

The numerically determined solution is:
A,=0.461046, B,=0.531778
A,=0.0230266, B,=0.0691887

The principal difficulty in developing the higher order
equations comes from evaluating the x*, The techniques
of partition theory lead readily to a generating function
that makes the calculation accessible. Consider the
expression

X=(X_q+ Xg+Xg+ %y + X+ %+ X+ %)%

There are 8 terms in the expansion of X. These terms
can be segregated according to the sum of the subscripts
which run from - 28 to +28. A term such as 12x_x.x, *
with a subscript sum 2 corresponds to a term 124,242
in H ,. The same technique can also be employed in
expanding %, Using this method the third and fourth
order equations are:

Third approximation
A,B, +3AB_ +5A B, - 1=0,
13A B, + TA,B, - A,B, + 54 B, + 11A B =0,
11A,B, - 54,B, + A,B, + TA,B, =0,
- B2+ 2B,B,+2B,B, +4A} + 12434, + 124242 + 124,43
+4AA, + 24424 A, + 12A3A2 + 124 ,A%4 + 244 A A2
+12434, +124,A3=0,
- 2B B, +2B,B,+Af+ 12A%A, + 6A2A2+ 124 ,A3 + 12474,
+ 124244, + 244 ,A2A  + 244 A A2 + 124 A}
+4A3A.+ 642420,
~B2-2B,B +4A%A, + 124242 + 12434, + 12424 A,
+24A A4+ 124 A A2 + 124 A% + 124242 + 442=0
Fourth approximation
A,B,+3A,B,+5A,B,+17A,B, - =0,
19A.B, + 13A B, + TA,B, — A,B, + 5A,B,
+11A,B, + 1T4B, =0,
174,B, + 11A_B, - 5A,B, + A,B, + 1A, B, + 13A,B, =0,
15A,B, - 9A,B, - 3A,B, + 3A,B,_ + 94,B,=0,
- B?+2B,B,+2B,B, + 2B,B, + 4A% + 12434, + 12434}
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+124,A3+ 4434, + 24A%4 A, + 12A%A2 + 124 A%A,
+24A,A,A% + 12434, + 124 A3 + 12424 A,
+24A%A A, + 12A%A% + 12A A%A, + 244, A A A,
+24AA A%+ 124, A2A, + 4434, + 24424 A,
+24A A A2+ 12A3A, + 124, A3 =0,

- 2B,B, + 2B B, +;B3B7 +A, +124%A,

+ 6AZA2 + 124, A% + 12434, + 12424 A,

+24A A2A 4+ 24A,A A2+ 12A A3+ 4A3A, + 6A2A2
+4A3A, + 24A%A A, + 12A2A A, + 244 A A A,

+ 124 A%A, + 24A A A2+ 244, A A2+ 12434,
+1242A A, + 244 ,A%A + 124 A3+ 6A%A2 =0,

- B%-2B B, +2B,B,+4A3A, + 12A2A% + 12434
+ 124244, + 244 A%A, + 124 A A2 + 4A% 1 124242
+12434, + 12424 A, + 244, A2A, + 124 A3
+244, A A A, +24A A2A, + 244 A A2 + 124, A% + 12424 A,
+12A,A%A,+ 12AZA2 + 124, A A2=0,

- 2B.B, - 2B,B, + BAZAZ + 44, A3+ 4A3A, + 6A2A?
+124,A A%+ 12434+ 124 A3 + 24424 A,

+ 12434, + 124%A A, + 244 A%A, + 24A, A A A,
+24A,A24, + 124, A A% + 124,A3 + 124244,
+6A2A% + 244 A A2+ 4A3A, =0.

In Table I the computer solutions of these equations are
recorded.

IV. CONCLUSIONS

The diagonalization of the Hamiltonian p® + x* has been
carried out several steps. The numerical work indicates
that the approximations are convergent. There are
several directions for the further development of these
ideas.

(1) Inclusion of a harmonic term: If the potential were
%% + 2xx* could the same procedure be applied? The lowest
order equation can no longer be solved conveniently for
a,and b, as we did in Sec. II. The equation becomes a
nontrivial cubic. Suppose we call the solutions @, and b,.
We may try and carry through the identical work with
the p, =B, b, and x, =A _.a,_ . It seems possible to
carry out the program without the specific simple forms
(r+ s)1/3 and (r+ s)?/8,

(2) Terms of lower order than (v + s)1/3 and (v + s)?/3.
To improve the approximations it should be possible to
construct equations for terms proportional to ( + s)2/3
and (7 +s)™/3, Although tedious it seems straightforward
to include these contributions.

(3) Generalizations to systems of oscillators: The
technique of using the diagonal commutator equation and
first off-diagonal Hamiltonian equation to establish the
form of the leading contributors has been carried out for
the case of two oscillators with no great difficulty. The
exact route to follow in adding more refined terms is
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not so clear in this case because there are six com-
mutators, two coordinates, and two momenta. How to
increase the number of equations and the number of
variables at equal rates is not clear.

It is worth considering why the present method works.
For example, we might have at the nth step solved 2n
commutator equations and no Hamiltonian equations and
expected the Hamiltonian equations to be automatically
satisfied. This expectation seemed reasonable to us
initially based on the argument that there is only one
problem, namely p* + x* with x> ~p. We were surprised
when this approach did not work until we realized there
is a whole class of problems such as p*+ x® in which the
relation between x and p is that given above. None of
these is physical but they exist as mathematical
examples. The procedure of taking one commutator and
one Hamiltonian equation at a time is apparently
successful in producing the correct x and the correct p.

APPENDIX: EXPRESSION FOR THE HAMILTONIAN
AND COMMUTATOR

We assume that X,,=A,_, (a+b)"/? and that p,,
=iB,_, (a+ b)?/? based on our experience in the lowest
approximation. We seek expressions for C,, and H,,
that are correct to the leading terms in (a+b). The co-
efficients A and B are chosen so that A, _, =A,_ while
B, ,=-B,_,. The commutator is given by
cab :E (pas Xsp— xaspsb)

=125 [B, A, (a+s)?/3(s+b)/3
~A, B, (a+s)¥s+b)3).
In the second sum change variables to s’ =a+b -5 so
that C_, becomes
C,,=i2 B, (A, [(a+sy/3s+b)/?

~(2a+b~-s)/3a+2b-s)?/3).

b-a

The limits of the sum are not the same for the first and
second terms but we shall only consider the common
range of summation 0 <s <a+b. Qutside this range it
will turn out that A and B are very small. We next ex-
pand the radicals about (e + b) and retain terms to the
second order. This gives

s—a\'/?

a+ b)

. s—b\%/?
Cp=i21B, A, (a+b) [<1+ a+b) (1+
a-s\/3 b-s\2/3
'<1+a+b) (1+a+b> ]

=123(1/3)B,. A, (65 ~ 4b = 2a) + O[(a + b)Y 2]+ ---.

The terms of first and third order vanish so this is our
final expression for the commutator.

The diagonal commutator element is given by
Cp=- 2i23(a-5s)B, A

and the diagonal commutator equations in various orders
can be found by including the appropriate values of s in
the sum because by the parity selection rule s must have
opposite odd—even parity from a.

a=s’

The off-diagonal commutator equations are simply

33(6s - 4b - 2a)B,_,A,., =0
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and s must again have odd—even parity opposite from
that of a and b which have the same parity. The lowest
order equation is found by only taking s a% close to
X(a+b) as possible. Higher orders are found by taking s
successively more remote from this central value.

Next we consider the expressions for p® and x* the two
terms in the Hamiltonian. We treat p? first since it is
simpler than x*

Pi,,z .ZEBa-sBs—b(a"'3)2/3(s+b)2/3b 2/3
=-2,B, B, (a+b)/3 (1+ Z:b> <1+

=-(a+ 6)4/323a_s33~b(l+ EW—

== (a + b)4/3234-s Bs-b
2 1/3
—§(a+b) 22(2s—a~b)B, B, +---.

The second term vanishes since the terms with s and
with a4+ b — s contribute equal and opposite amounts so
that

== (a+b)**2 B, B, ,+0[(a+b)?/3].

We retain only the (a+b)?/3 term. The vanishing of the
second term is a general feature of our work.

Next we consider the x* term:

Xm0 A A, Ay A (at gl 3 (g + vV 3+ s) (s + BY/3

) q- HY/3
=(@+b) 2 LA, A LA, A, (1 + )

at+b )
q+r—a—b>”3( r+s—a—b>”3
x(l+ a-b 1+ a+b

s—a}’?
X
<1+ a+b)

=(a+b0)*TA, A, A, A, 3a+b)/?

X2 (2g+2r+25s-~3a~3b)A,_ A A A+,
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TABLE 1. Solutions of the equations for the A’s and B’s in the
various orders determined numerically.

1st order 2nd order 3rd order 4th order
4 0.5 0.461087 0.460787 0.460786
Ay ~—- 0.0232112  0.0207894  0.0207712
Ay ——- — 0.001035 0. 000898
Ay - - - 0. 0000462
B, 0.5 0. 531794 0.532751 0.532758
By --—- 0.0688800  0.0719824  0.0720464
By -—- — 0. 005005 0.0051872
B ——- -— -—- 0. 0003028

Again the second term vanishes. To see this let a—¢
=0y, q—r=0,, r—s=46,, and s —b= 6,. There are
choices of ¢, 7, and s such that all 24 permutations of
6,, 6,, 0,, and 6, occur. If we write the second sum in
terms of #’s it becomes

2iAg Ag Ay Ag (-36,- 6,+6,+30).
If this is summed over the 4! permutations of the 8’s it
vanishes so that

X% =(a+ bY /3T A, A LA, A+ [0(a+b)?3]

r=s

*Work supported in part by the United States Atomic Energy
Commission.
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A new method is presented which sums certain slowly convergent series. It is based on the use of
the Hankel integral transform and Schlémilch series. This method is applied with great success to
the computation of lattice sums in ionic crystals. In particular, the Madelung constant is calculated
with great accuracy through rather simple calculations: The final results only involve elementary

functions so that the numerical evaluation is quite easy.

1. INTRODUCTION

It is commonly admitted that the interaction potential
in an ionic crystal follows the law gq'/v — A/7*. g and
g’ are the charges of the ions and 7 is the distance be-
tween them. The total interaction for an ion is therefore
described by the following lattice sums:

I
a=3323)05(#)r" (= Madelung constant of the crystal), (1)

M=000"rs  (s>3). (2)
The symbol (+) indicates that the signs of the ions are
taken into account (and also the modulus of the charges

if they are not equal for the various ions). The prime
means that the summation is extended to all the ions in
the crystal except that for which »=0.

Many solutions have been proposed for evaluating
these sums. The natural method of counting (increasing
¥) is not interesting since the convergence is bad.

Evjen! has modified the way of counting to improve the
convergence. In spite of its success it must be recog-
nized that the convergence remains poor. The method is
almost interesting when one deals with very complicated
multiple sums, for which no analytic method can be used.
Madelung? calculated @ by means of Fourier series. The
convergence of the method is quite good. However it is
not very elegant and Evjen' pointed out that the treatment
lacked rigor in some places. The most powerful method
with regard to the available accuracy is due to Ewald®.
Unfortunately the method is far from simple. Born and
Huang*'® have based another method on the properties of
Jacobi’s theta functions but the method loses its initial
elegance when applied to numerical computations. Very
recently® Glasser showed how it was possible to sum (1)
and (2) when the lattice is even-dimensional but pointed
that no extension seems to exist to the important three-
dimensional case. Now one could ask: why a new
method? Our answer lies in the two following points:

In spite of the existence of numerous summation
methods there is some need for a simple method leading
to very accurate values through accessible intermediate
calculations.

Such a simple method exists and provides an interest-
ing application of the so-called “Schlémilch series” in
mathematical physics.

Il. MATHEMATICAL PRELIMINARIES
A. A useful Laplace transform

Let us first recall a formula which shall play an im-
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portant role:
(a?+b?)-s = [2l-2571 /z/r(s)]fo“ x251 exp(= ax)
X [Jy.1/2(b%)/(Bx/2) /2] dx. (3)

If we have to sum on both ¢ and b, it might be very
tempting to sum first with respect to a since the inte-
grand is simply the general term of a geometric series.
However there is a better method: it is possible to sum
with respect to b. One obtains a Schlomilch series with
very useful properties.

B. Some theorems about Schlomich series

These series were first investigated by Schlémilch’ in
the last century. Now this subject is classic and it is
developed in advanced books dealing with the theory of
Bessel functions.® We present some classical results
about Schlomilch series which are interesting for our
purpose. Schlémilch has investigated the problem of
expanding an arbitrary function into a Schlomilch
series:

A = [ay/2T(s + D]+ 2 [an I (mx) + b H (mx) ]/ (mx/2)°
where J; and H, are Bessel and Struve functions, re-
spectively.® Nielsen® has found the following results (all

the functions below are even):

£ =[1/20(s + D1+ Ty (= 07, m) (/2"
= (/2 (= D™ mn) /im/2*=0 i 0<x<n (4

q
=[2n/%/xT(s +1/2)] Z}l [1-(2n~ 1)%%/x%]2/2
if (2g-m<x<(2¢+1)7.
It is also possible to establish that:

o

gfx)=[1/2r(s +1)]+ El Jy(mx)/(mx/2)

= (1/2)3 §ma)/(mx/2)"

=[m/3/xT(s +1/2)] if 0<x <27 (5)
=[n'/2/xT(s +1/2)]+[27*/3/x(s + 1/2)]

xzq_)l (1~ (2na/x)22/2 if 2qm <x < 2(g+1)7.
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From these two fundamental formulas we deduce other
simple expressions:

o

Z‘_,l I (2mx) /(mx)s =

([1/T(s+1)]+2 Z}J (2mx)/(mx)®

=f,(x) +g,x), (6)
gz J(2m - Vx)/[(2m = 1)x/2]

= Z) J[(4p + Vx1/[(4p + Dx/2]¢

=23 J(4p + 3)x]/[(4p + 3)x/2]

= 253 a(2p+ Vx)/M(2p + D/2k

E[g (x fs(x)]- (7)

C. Hobson integral and its consequences
The modified Bessel function of the third kind K, ad-
mits the following integral representation due to Hobson:

fa” exp(= bx)(x% = a®)* /2 dx =(2a/b)* 1 /3T (s + 1/2)K (ab).

(8)

This formula enables us to calculate the following
expressions:

P(b)= [~ exp(- bx)x*f,(n)dx (s> 0) (9)
and
Qu(8) = [~ exp(~ bx)x*

g (x)dx (s>0). (10)

One finds without difficulty through (4), (5), and (8) that

P(b) =2(21/b)°[K (nb) + 3K (37b) + 55K (57b) + -+ - ],
(11)
Q4(b) =257 1p-5T'(s) + 2(21/b)5[ 25K (2mb) + 4°K (4mb) + + - - ].
(12)

These expansions are very rapidly convergent. For
example if in (11) we set s=0 and b=1, the first term
in the brackets is Ky(m) ~3.107% while the third term is
K,y(57) ~5.107%; the third term brings a relative correc-
tion less than 2.10°®, The quick convergence is the con-
sequence of the asymptotic behaviour of K (z)

~(1/22)' /2 exp(~ 2).

lIl. EVALUATION OF LATTICE SUMS

We shall apply the new method to the evaluation of a
and M, in the three fundamental cubic lattices: the NaCl
structure, the CsCl structure and the ZnS structure.
The method extends without difficulties to the noncubic
systems.

A. The NaCl structure

The coordinates of the ions are integers.m, n and p.
The charge of each ion is (~ 1)™™#*1,

1. The Madelung constant o {NaCl)

a(NaCl) _ Z; Z:! Z r(_ 1)m+n+p+1(m2 +n2 +p2)-1/2
=:'2” E'( 1 mwﬁ-lf”exp _x(m2+n2)1/2]
X [’2( 1) Jo( px]dx + Z} 1)"’1f0”J0( bx) dx,
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where use has been made of (3). The Schlémilch series
in the first term equals 2fy(x). Therefore one has, with
the aid of (9),

=21nz+4Z_}2'(-

242172+ ...}

a(NaCl) DK [n(m? +n?)t/2)
+Ko[3n(m
=21n 2+ 16[Ky(m)

- Ko(m/i) - Ko(2m)

+ 2K(1V5) - Ky(nVB) + 2K,(37) - 2K(nV10)

+ 2K, (1V13) — Ko{dm) + -],
If four terms in the brackets are retained, one finds
a=1.7479. The relative error § equals 2. 10™*. Nine
terms give 1.74756 (5 <2.107%). This simple example
shows how neat the method is. The same result might
be obtained by using Poisson’s simple summation formula
but it almost appears as an accident. '

2. Calculation of M, (NaCl)
2(NaCl) =2 Z} 2 (m? + n?+ p)e
=[2t-2sq! ”/F(s)]i) E,j: exp| — x(m

X i J_g-l /z(px)/(px/z)s-l /2 dx

+ zzf;[nl 12/1(s)

24 n2)l /2] xas-l

]fow(x/zi’)s-“z"sd 1 px) dx
=255 + (2% /2/T(s)]
1

X _Zj b Qs.1/2 (M2 +n?)1/?),

The first term reduces to the Riemann zeta function; the
second term splits into two parts in agreement with (12);
the first part is written as

[2>-%71(2s - 1)/[T s)]z] m? +n?) e,

The double series has been calculated by Glasser® who
found that

73 5 (m + )= 42(s)B(s).

The final result is now immediate:

M,y(NaCl) =2¢(2s) + [2*27T(2s - 1)/[T'(s) ]

t(s-1/2) B(s - 1/2)

>—\’( 2.4 p2)(1-29) /4

aLVJ‘i

+[2°/%57° /T (s)]2
X207 12K,y o 21(m® + )1 /2]
+ 4371 /aKs.1 /2[4,”(m2 + nZ)llz] 4. }

Numerical examples:

My, =2£(10) + (357/32)£(9/2)B(9/2)

(7°/96v'2) {4. 29/2}{9/2(21;-) +4. 49/2K9/2(47T)
+4.2%/4K, ,(21V2) + 4. 6%/3K, ,,(6m)
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+4,4%/229/4K, (4TV2) +8.4%/%57 4K (27V5) + - -
The series in the brackets converges quickly: three
terms in the series give M,; with three significant

figures; six terms give M;, with seven figures. One
finds

My(NaCl) = 6.426 104.

B. The CsCl structure

The coordinates of the ions are (m+1/2, n +1/2, p
+1/2) =positive ions and (m, n, p) = negative ions.

1. The Madelung constant o (CsCl)
a(CsCl) =2, Z: T {lon+ 1/2)2 + (n+ 1/2)%+ (p + 1/2)2]1/2
— (m?+nd+p? 112
= 22 :'Z:; 2'(_ 1)m~m+p+1(m2 + 5 +pa)-1/z
+62 2 Dl4m? + (n+ D2+ (2p + D2
, 1 /2}
Under that form the expression is well prepared for the

introduction of a Schlémilch series; using (3), (6), and
(7 one finds

—[4m®+ (2n +1)2 + 4p?]

a(CsCl) = 2a(NaCl) + ei, 2 fO” exp{- x[4m® + (2n + 1)?]'/3}
& {Jel(2p + 1)x] - Jy(2pn)}ax
@(CsCl) = 2a(NaCl) - 12 2: 2 Po{lam? + (2n + 1)21 /%
= 20(NaCl) - 243 T {Kylnl4m? + (20 + 1)2}/2)
+Ko(3n{4m?® + (2n+ 1)2/3) +.. .}
= 2a(NaCl) -

48[ Ky(m + 2K,(mV5) + 2K,(37)

+ 2K,(7v13) + 2Ky (wV1T)
+ 4K, (5m) + 2K (1V20) +« - - ]

=2.035 35.
2. Calculation of M,i(CsCl)

»(CsCl) = 222{(m+1/z2+(n+1/22+(p+1/2)3]

+ (m? +nl+ p?)=5} = M, (NaCl)
F2 DT T [(2m+ D2+ (2n+ D2+ (2p+ D,

The triple series is easily calculated by using the method
which is now familiar to the reader; one finds

[2t-211/2/T(5)] D i(QS_l,z{[(zm +1)2+ (20 + 125
=Py /z{[(Zm +1)2+(2n+ 1)2]1/2})-

Using (11) and (12) one finds a first contribution of the
type Yravl(2m +1)2 +(2n + 1)2]5. Iis value is given by
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22%(1 —2-5)¢(s)B(s). Finally one finds
-1/2)/T(s)]

X(1-2Y%9)¢(s-1/2)B(s = 1/2)

M?_,(CSC]-) = Ma,(NaCI) + 9543 /241 /Z[F(S

- [27/2 /(9|2 Dllam + 1)

+(2n+ 12102 (K o(n[(2m + 1)2
+ (27[ + 1)2]1/2) - zs-l/ZKs_l/z{z,n[(zm + 1)2
+(27L + 1)2]1/2}+ 3.9-1/2 . .)-

Numevical examples:

M,,(CsCl) = M,,(NaCl) + (1057/96)(16V2 - 1) ¢(9)8(9)

- (321°V2/3)[2° /4K, ,(1V3) -

+ 2'9/439/3K9/2(371~/§)

~ 28T/4K, (4TVE) + 2. 1070 /4Ky o (TVT0) + - - - ]
=40.3043.

2°/4K, ,5(27V2)

C. The ZnS structure

The negative ions lie at the sites (m/2, n/2, p/2) with
m+n+p even. The positive ions lie at the sites (m/2
+1/4, n/2+1/4, p/2+1/4) with the same condition.

1. The Madelung constant « (ZnS)
o ZnS) =2 25 27 {12[(4m + 12+ (4n + 3)% + (4p + 3)%]" /2

+4[(4m + 12+ (dn +1)%+ (4p + 2]/

- (mF+n?+p? 2 6lam? + (20 + 1)

+(2p+ 1%/
The two first terms can be transformed together into
ITo216l(2m + 1) +(2n + 1)+ (2p + 1] /2

=2y T ovl(2m + 1)2+ (20 + 1) +(2p + 1)2]"1/2 through sim-
ple arithmetical devices. We find that

a(ZnS) = a(CsCl) - 67 Z:} 2o[am?+(2n+ 1)2+(2p + 1)3]1/2,

The triple series will be evaluated in Sec. III.C2 for a
general exponent s. Here we take the limit when s tends
to 1/2. We find:

a(ZnS) = a(CsCl) + 31n2 - 48[Ky(1V2) + Ko(21v2) + 2K,(nVT10)
+ 2K (1v18) + 2K,(1V26) + + - - ]
=3.782926.

This simple formula gives @ with seven significant
figures!
2. Calculation of M (ZnS)

Using the arithmetical devices used in Sec. III C. 1,
M,, is easily brought into the form
25(Zn8) =27 23 Y {28 1(2m + 1)2+ (20 + 1)2+ (2p + 1)2]

+(m2+n2+pH= +3.2%[4m2 + (2n + 1)?
+(2p +1)%]}
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=2%"1M, (CsCl) - (2% - 1) M,(NaCl)
+3. 2“2}2 2o[amE+ (2n+ 1)3+(2p + 1)2]5.

The triple series can be evaluated as above. One
finds

(27T 5 T (Quutjellan + 1%+ (29 + )21/
+ Py pil(2n+1)2+(2p + 1)2]V/3).
Finally, one has

M, (ZnS) = 2571 M, (CsCl) — (227! - 1) M, (NaCl)
+ 31 /29843 /2( 1-2t /2-3)

[T(s-1/2)/T(s)]t(s - 1/2)B(s - 1/2)

+3(207/2/T(5) ] E D2+ 17

+(2p + 1] NK plal(2n +1)?
+(2p +1)2]H/H + 27 /2K3.1,2{211[(2n +1)?
+(2p+ DA ),

Numerical example:

M, (ZnS) = 512M,,(CsCl) — 511M,o(NaCl)
+(1057/32)(16V2 - 1)£(9/2)8(9/2)
+32mV2[ 204K, , (1V2) + 2°/4K, ,,(27V2)
+ 2794392k, (3VD) + 224K, 5(4nVD)
+2.107%/4 K, ,5(mV10) + - - ]

=171740.
D. Refinement of the above resulfs

The evaluation of M, and « has been performed in a
satisfactory way: the calculations are neat and the final
results are expressed in the form of very quickly con-
vergent series. However tables of the K, functions are
needed. When s =n+ 3 (n integer), the tabulation is
easily performed since K,,;,; is an elementary function
(product of an exponential by a polynomial). When s=n
(integer), the problem is less simple. If a relative
accuracy of about 10°® is judged sufficient, one can use
Watson’s table® (with seven figures). In practice, this
accuracy is quite sufficient. However it is possible to
refine the results by expressing @ and M,, in terms of
elementary functions only. This statement is obvious in
the case of M,, provided s =7 is an integer. If s=n+3%
we shall see that this is also true. Now we present the
refined method and we apply it to the evaluation of a. If
s#n or n+ 3, the problem is not soluble in terms of
elementary functions; since K, is not tabulated in these
cases the evaluation of M,, would require further inves-
tigation. Fortunately the two possibilites s=n or s=n
+% are in practice quite sufficient. So we try to refine
the previous result:

o(NaCl)=21n2+ 4§ (= K [n(m? +n?)t /2]
+ Ko[3n(m? +n®)t 2]+ ...},

First, we calculate:
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S(z):izl(— l)mdeo[z(mz_',nZ)l/Z]. (13)

We show that the use of Schlémilch series allows us to
transform (13). We have

s(z)=§zlzsl+sz=2§§ +Zi (m=0).

Nz n=1

To calculate S;, we start with the formula
Kolz(m2+nD)' /%)= mf:(ta + 292 g (nt) K [m (% + 22)* 2]t dt.

which is introduced in the definition of S;: a Schlémilch
series immediately appears which is summed according-
ly to (4):

8, = 22”21 (- 1™t sz mfo(l)(tz+ 29 V2K [m(s® + 2% e dt.
m= 0

Using Eq. (4), we find a development with integrals of
the type:

f: (2 + 282K [m(u? + 23 3] du = (n/2mz) exp(- mz).
We get:

_i (= V)" Klz(m? +n®) /2] = 20{(2% + 1%)-1/2
x exp[~ m(2? + 7% /?]
+ (22 + 91/ expl— m(z?+ o) /2] + ..}

and finally

Sy(2) =4n2; [22+ (28 + 1)27%]"1 /2 {exp[2® + (2& + 1)%n?] /2
k=0
+ 1},
S,(z) is evaluated by means of a similar technique (see
Appendix A). The final result expresses a(NaCl) in

terms of elementary functions [except for the use of
£(1/2) and B(1/2) which are tabulated]:

a(NaCl) = 4(1 - 213 ¢(1/2)8(1/2)

+16 Z}”Z) (@1 +1)2 + (2 +1)2]1/2

%,130

{exp[(21 + 1)2+ (28 + 1)2] /27 + 1)1, (14)

This expansion exhibits remarkable convergence; eight
terms give « with twelve figures!:

a(NaCl)=1.747564 594 63.

Note that one term gives « correct with four figures:

a(NaCl) =4(1 - 23 ¢(1/2)8(1/2) + 16. 27/ ¥ exp(m2!/?)
+1]'=1.747.

Of course the same procedure gives the values of
&(CsCl) and o(ZnS) (see Appendix B for more details):

a(CsCl) = 2a(NaCl) - 1221(21_ 1)esch(2l - V7
1=

~242.23[21 - 1)2+ B2 2 csehal(21 - 1)2 + R2]H /2
k,1sl

=2.035 361 509 45, (15)
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a(ZnS) = a(CsClL) +31n2—~ GZ It esch(ln)

+ 1222

k1=l
=3.782926 104 08.

l)kd k2+l )-I/ZCSCh[‘N(kz"'l )1/2]

In the special case of the NaCl structure, the refined
result might be derived from Poisson’s double summa-
tion formula.!?

E. The exp(-ar)/r potential

The same method applies when more complicated lat-
tice sums must be evaluated. Let us examine the im-
portant case where the interaction is of the type
exp(— ar)/r. We must calculate (a>0):

5=y, i} > 7! exp(~ av).

We calculate this sum in the NaCl structure. We start
with the formula

fo “Hi%+ a2 (1) exp[~ y(£2 + a®)}/?] dt
=(x®+ 3% /2 exp[- al(x® + 99! /%],

We set x=p and y=(m?+n?'/? (with the notation of Sec.

III.A.1). We obtain
Ll !
55592

x(tz + aZ)l lz]dt.

: Ht2 + a®) ™2 gy pt) exp[—~ (m? +n?)t/?

The sum splits into two parts:
Z)Z“;E = Z;Z;Z::j 2!’2_)1 (m=n=0).

In the first term a Schlémilch series appears which is
summed in accordance with (5). The second term is
easily summed by elementary manipulations on geo-
metric progressions. We find

S=-2In[1 ~ exp(— a)] +2 Z‘_:Z UK [a(m? +n?t/?]

+ 2K [(a? + 4791/ ¥(m? + n?)1 /%]

+ ZKO[(aZ + 16,".2)1/2(m2+n2)1/2] + e .}.
This series quickly converges through the whole range
of a values. The use of the K function may be avoided

by using the procedure described in Sec. III.D. One
finds

=(4n/a)[expa~ 1]+ 16112 Z}[a2+ (2Bm)E + (2Im)2]1/2
x{exp[a2+ 2k1r)z+(2l11)a]1/2 1}

+4 22 m?+n?)1/2 exp[~ a(m®+n?)* /%]

When a is small, the behavior of the last term has been
studied by Glasser® who gives its approximate value.
The other terms are easily evaluated since they involve
only elementary functions.
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1V. BRIEF DISCUSSION OF THE NUMERICAL
RESULTS

It is interesting to compare the various numerical «
values occurring in the literature since they do not al-
ways coincide! Let us consider the most important
example: a(NaCl). Most of the authors give the value
1,.7476 in their textbooks on solid state physics. Kitte
and Dekker'? give more accurate values: 1.747558. They
obtained that value from the classical paper of
Shermann. !* Comparing with our result, we note a dis-
crepancy of 6.10°%. Sakamoto' and earlier Emersleben®
have calculated the same quantity by Ewald’s method;
they have found a value in agreement with ours. The
same remark holds for CsCl: the traditional value!!s!%:3
is 2.035 356 but we find 2.035 361. For ZnS the litera-
ture is less accurate (3.78292) so that the discrepancy
does not exist.

V. CONCLUSIONS

It is possible to reformulate the above theory by using
the language of the theory of integral transforms.®
Having to sum the series S=73,(+)u(z), we introduce the
Hankel transform (or order s) of the function z%u(z):

F(t)= fo " zd (2t z%u(z) dz.

111

The inversion theorem tells us that

sulz) = [ tJ()F () dt.

After slight manipulation we can write
S=2- f ! [Z;(:t)Js(zt) /(zt/z)S]F(t) dt
0 z

A Schldmilch series appears which is summed accord-
ing to (4) or (5). Performing the integration, the final
result takes the form of a new series whose conver-
gence may be improved with respect to the convergence
of Y(+)u(z). This paper has shown by several classical
examples that the method is effective and useful. It fur-
nishes a very good method for computing lattice sums
in ionic crystals. No other method gives simple re-
sults as in Eqs. (14)—(16) with such an accuracy. Among
all the existing methods leading to the evaluation of very
accurate lattice sums, this method appears to be one of
the simplest.

Very recently we have further refined the above re-
sults, In particular, the use of Schldmilch series al-
lows us to find numerous summation formulas for K,
functions like those described in Appendix B. Calcula-
tions and related applications will be reported in a fu-
ture paper. A possible application is the expression of a
in term of elementary functions only (without reference
to the zeta and the beta function of Riemann).

Example: One has the curious formula

a(NaCl) =(9/2)In2 - (1/2)
+ 122:2 {[(2j - 12+ (26 - 1)2]1/2

X cschn[(2j — 1)+ (2k - 1)2]*/2
— (4% + 16D /2 cschn(452 + 46D/ 5.

Four terms give:
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(9/2) In2 ~ (n/2) +(12v2) cschnv2 - (12/V8) cschmV8
+(24v10) eschnv/10= 1. 747 56(28)
accurate to 1076,
Similar formulas hold for the other crystallographic
structures. They will be reported in a future paper with
other possible applications.
APPENDIX A

Certain double series containing K functions can be
summed exactly in terms of Riemann zeta and beta
functions. If s >0 one has

EQE(_ 1)m+1m1/2-s(2l_ l)s-l/sz-l/z[ZZ -1 mﬂ]

1,m=1

=325 20(s)[2(1 ~ 21%)£(s)B(s) — (1 = 21%)g(2s)].

The proof of this formula is left to the reader. He will
start with the formula®

5 (= )™+ 1) = (1 = 275 £(25) — (1 - 259)8(s)2(s).

myn=1

He will evaluate the double series by the new method.
The result will follow. This series occurs in the evalua-
tion of a(NaCl) (with s=1/2).

APPENDIX B

Using the method presented in Sec. III.D, the reader
will have no difficulty to prove that

_;Li 2 Ko{z[am? + (2n+ 1)/ % = (n/22) eschz
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+ ‘Hg)l (22 + 2% /2 cseh(z? + k221 /2
and that
T TRy {al(2m + VP +(2n+ D2/
=(m/8z) cschz - (n/4) kZ:;x(— 1222 + B2q?)-1/2
X csch(z? + k%9172,

The first equation leads to the refined value of a(CsCl)
while the second leads to a(ZnS).
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A detailed study of the group of symmetries of the time-dependent free particle Schrodinger equation
in one space dimension is presented. An orbit analysis of all first order symmetries is seen to
correspond in a well-defined manner to the separation of variables of this equation. The study gives
a unified treatment of the harmonic oscillator (both attractive and repulsive), Stark effect, and free
particle Hamiltonians in the time dependent formalism. The case of a potential ¢/x? is also
discussed in the time dependent formalism. Use of representation theory for the symmetry groups
permits simple derivation of expansions relating various solutions of the Schrodinger equation, several

of which are new.

INTRODUCTION

The present paper is one of a series investigating the
connection between separation of variables and Lie
symmetry groups. In this work we make a detailed study
of the free particle Schrédinger equation in the time-
dependent formalism, i.e., the equation

(*) wu, +iu,=0,

and of the radial equation for a free particle,
¢ .
(xx) u, - ;Z—u+mt:0.

Anderson el al.' (with some errors) and Boyer? have
classified all equations of the form

(k%%)  u,, — V(X +iu,=0

which admit a nontrivial symmetry algebra of first order
differential operators. It is known, e.g., Neiderer,?
that among these equations, those corresponding to

the harmonic oscillator and the linear potential are
actually equivalent to (*). Here we show in a very ex-
plicit manner that every equation (x*+) admitting sym-
metries is equivalent to either (*) or (xx). The equations
(xxx) are exactly those obtained from (x) and (**) by
taking all possible separations of variables.

In Sec. 1 we rederive the known six-parameter sym-
metry group G of equation (x).''2'%5 Here G is a semi-~
direct product of the three-parameter Weyl group W
and SL(2, R). We determine the global action of G and
compute the orbit structure of its Lie algebra under the
adjoint representation.

In Sec. 2 we classify all coordinate systems such that
variables separate in equation (*) and relate them one-
to-one with the G orbits. It is found necessary to include
R separation as well as ordinary separation in this
analysis. The orbits are essentially labelled by the
attractive and repulsive harmonic oscillator, linear
potential, and free particle Hamiltonians. Although all
our coordinates systems are already known,  the proof
that they are exhaustive and their explicit relation to
orbits appears to be new.

In Secs. 3 and 4 we give the basis in a one-parameter
model for a representative of each G orbit. The calcu-
lation of the basis functions in the Hilbert space of func-
tions depending on x and {, and the overlap functions
between the various bases are also given. We show that
our knowledge of the G structure of (*) greatly simplifies
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the derivation of the spectral representations of various
associated Hamiltonians as well as expansion theorems
relating different solutions of (*). Several of the overlap
functions are new and our proofs of the L,-expansion
theorems for parabolic cylinder and Airy functions are
much simpler than the standard derivations. This work
can be considered as the Hilbert space analogy of
Weisner’s work® on analytic expansions in Hermite func-
tions. The papers of Whittaker’ and Erdélyi® are also
related to our procedure.

Finally, in Sec. 5 we give a corresponding analysis
of the equation (**). The methods of Barut® for com-~
puting the spectra of Hamiltonians through the use of
representation theory are closely related to our ap-
proach.

The analysis presented in this paper is preliminary
to the treatment of the time-dependent Schrédinger
equations in two and three space variables, which admit
symmetries. There the theory is much richer. In
particular, degenerate eigenvalues appear and it is
necessary to associate separable coordinates with both
first and second order symmetry operators. Never-
theless, as we shall show in forthcoming papers, the
same general approach can be utilized.

All special functions appearing in this work are nor-
malized as in the Bateman project, 1°

1. SYMMETRIES OF THE EQUATION ju, + u,, =0
Let X be the differential operator

X=id,+d,, (1.1)

acting on the space 7 of locally C* functions of the real
variables x, f. We wish to find the maximal symmetry
algebra of the equation

i, =—u, (1.2)

i.e., we wish to compute all linear differential opera-
tors

L=a(x, )3, +b(x,1)3,+c(x,1), ab,ce? (1.3)

such that Lu(x, t) satisfies (1. 2) whenever « does. As
is well known''%:!* g necessary and sufficient condition
for L to be a symmetry is

[L,X)=#(x, )X (1. 4)

for some < 7. By equating coefficients of 9_,,9,,9,,

and 1 on both sides of (1.4), one obtains a system of

Copyright © 1974 American Institute of Physics 1728
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differential equations for a, b, ¢, and . We omit the
details which can be found in several references. -4
The final result is that the allowable L form a six-
dimensional complex Lie algebra (/¢ with basis

Ky=—123,— x3_— t/2 +ix?/4, K,=-1d_+ix/2,

(1.5)
K,=i, K, =0, K,=0, K'=xd +2td,+%
and commutation relations
K3, K,)=jK, j=%2, £1,0, [K_,K,]=1K,,
K ,,K,]=K,, |[K, Kl=-K,, I[K, K]=-K. (1.6)

In this paper we will be concerned only with the real
Lie algebra (; whose basis is (1. 5). A second convenient
basis for (; is S;, L,, E, where

S,=K,, S5,=K,;, L;,=K,-K,,
L,=K® L,=K,+K,, E=K,.

(1.7

The commutation relations become

[LlyLz]:_ZLay [L3’LI]:2L2’ [LZ,L3]=2L1,

[819 Sz] = _.'le'E, [Lsa Sl] :Szy [La’ Sz] == Sp

[Lz,Sl]z[Sz,Ll]:—Sz, [L]_) Sl]:[Lzysz]:"Sl
where E generates the center of (;. Clearly, the
operators L,,L,, L, form a basis for a subalgebra of (;
isomorphic to sI(2, R) and the operators S,, S,, E form a

basis for the Weyl algebra /. Furthermore, (; is the
semidirect product of si(2, R) and j/.

Using standard results from Lie theory, 2 one can
exponentiate the differential operators of (; to obtain a
local Lie group G of operators acting on 7. The action
of the Weyl group W is given by operators

T(u, v, p)= exp|p + (uv/4)] E exp(uS,) exp(vS,)  (1.8)
with multiplication

T(u,v,p)T (W, v, 0 )=T(u+w,v+v,p+p +{(vu —urv')/4)

(1.9)
where
[T(u,v,0)7](x, t) = exp{ilp + (uv + 2ux - u?t)/4]}
Xf(x+v—utt), fe7.
The action of SL(2, R) is given by operators
2
[T(A)f1(x, 1) =exp [z(%)] (6 +18)7/
(1.10)

% x v+ia
f 5+18 b6+1B

where
@
A =( ’ g) €SL(2, R),

i.e., A is a real matrix with determinant + 1. Further-
more,

T((l) ?):eXp(BKZ), T(; ?):exp(BK_z), a1

e* 0 3 cosf - sind |
T(O e_a)-—exp(aK ), T(sine cose)_eXp(eLa)
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cosh¢ sinh¢p \
T(Sinhq’) coshq>) = exp(¢L,).

Finally, the action of SL(2, R) on W via the adjoint rep-
resentation is

THA)T(u, v, p)T(A)= T(us + vB, uy + va, p). (1.12)

This defines G as a semidirect product of SL(2, R) and
w:

g:(A;w)EG; AESL(Z,R), wz(u,UyP)EWy
T(g)=T(A)T(w), (1.13)
T(2)T(g') = T(AA") [T(A’Y'T(w)T(A")] T(w')=T(gg").

It follows from general Lie theory that T(g) maps
solutions of (1. 2) into solutions. !

The group G acts on the Lie algebrag of differential
operators K via the adjoint representation:

K—~Kf=T(gKT(g).

This action splits g into G orbits. For our purposes the
operator K,=1 is trivial so we will merely study the
orbit structure of the factor algebra ¢ =/ {K,} where
{K,} is the center of ¢;. ’

This computation was carried out by Weisner® for the
complexification of g and needs only minor modification
to adopt it to g . Let

K=AK,+AK,+A K +A_ K, ,+AK>

be a nonzero element of (;* and set a =A,A , + A%, Itis
straightforward to show that ¢ is invariant under the
adjoint representation. In the table below we give a
complete set of orbit representatives. That is, K lies
on the same G orbit as a real multiple of exactly one of
the five operators in the list.

Case (@ <0): K,~-K,=L,,

Case 2(a>0): K, (1.14)

Case 3(a=0): K,+K_,, K,, K.
Note that there are essentially five orbits.

It is well-known that knowledge of the symmetry
algebra of a differential equation permits one to obtain
solutions of the equation via separation of variables. 13:1¢
Indeed, in our case for given K¢ g and A € R the system
of equations

Ku=ixu, Xu=0 (1.15)

leads to a separation of variables in the Schrodinger
equation. It is clear that two operators K, K’ on the same
G orbit lead to equivalent separation of variables via

(1. 15). Furthermore, since K_,u =:K®u whenever Xu
=0, the orbits containing K_, and K _, lead to essentially
equivalent separations. Thus Eqgs. (1. 15) lead to separa-
tion of variables in four distinct coordinate systems
associated with the orbit representatives K,, L,, K,
+K_,, and K_,. In Sec. 2 we shall classify all coordinate
systems in which variables separate for Xu =0 and show
that there exist only the four obtainable from (1. 15).
Thus separation of variables for Xu =0 is explainable in
terms of the symmetry algebra alone. (Note that for
equations such as u, +u, +ku=0and —iu,=u, +u,

it is necessary to use quadratic elements in the en-
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veloping algebra of the symmetry algebra to describe
separation of variables. 1516

The real six-dimensional symmetry algebra (" of
the heat equation

U=y, (1.16)

can be obtained by a computation analogous to that for
the free-particle Schridinger equation. * One finds that
the operators
K,=123,+ txd + t/2+x%/4, Kj=1tox+x/2,
(1.17)
K =1,

0 K,=9,, K,=0, K'3=x8x+2tat+§

form a basis forg” where K spans the center of g” and
(K3, K] =jK, x, k& 1=[K,, K", ]=0
[KCI’K;]:KS’ [K’.p Ki]:%Ko, K7, K'l]*:K'.p

(K, Kt]=K"3.

j=2, 1, 0,

There are five orbits in " /{K;} under the adjoint rep-
resentation with corresponding orbit representatives
K, K,+K, K, +K! ,K',,K',. Since K',=(K",)* for solu-
tions of the heat equation, only four coordinate systems
in which variables separate are associated with the five
orbits.

2. SEPARATION OF VARIABLES FOR THE EQUATION
XU =0 AND THE HEAT EQUATION u, = u, ,

In this section we examine the problem of the separa-
tion of variables for Eq. (1.2). As opposed to the cor-
responding problem for the Helmholtz equation there is
no established method of approach here (i.e., no as-
sociated differential form and corresponding obvious,
group of motions as in the case of, say, the Euclidean
plane. !”) We therefore proceed directly and examine
the possibilities.

Choosing a new set of real variables v, and v, where

x=G(v,,v,), t=H(v,,0,) (2.1)

and G, H are real invertable functions, Eq. (1.2) can be
written in the form

(@4y0;, + 15055 + gp055 + 0,0, + a3, )Ju =0, (2.2)

where

an:({['a)z’ am:_ZH_é_Hz’ azz=<£1')2’
D D D

and D =G,H, - H,G, (subscripts denote differentiation
with respect to v,), a, and a, are complicated functions
whose explicit form we do not need for general G and H.
From the form of (2. 2) we .see that a necessary condition
for a separable solution (see definition below) of the
form u = A(v,)B(v,) is that at least one of the coefficients
a,,, G, 0y be zero, i.e., either H, or H, is zero.
Without loss of generality we can take H, =0 and write
t=v, (as H cannot then be a constant function). With
these assumptions (1.2) assumes the form (2. 2) where

iG, Gy .
4= -G_i’ ay = Gl - Gi 3 Gy=1 (2. 3)
and all other coefficients zero. In order that this equa-

tion separate we have the additional constraints
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1 Gy, o
G—.l :f(vz)g(vl)’ Gl :f (Uz)h(vl)- (2- 4)
From these equations we have
1 1 h
Go=—09,] =) =f0,{— 2.5
w=30(7) =ra3) (2.5
and hence
1 1
7 52(7> =3b (2.6)

with b a constant real number. There are two cases to
consider:

(i) b+#0. Then 1/f=+Vbv,+ c. Without loss of gen-
erality we can take ¢ =0 as our defining equation is
translation invariant. The function G then has the form
G =g(v,)v,}/? where Z is a nonconstant real function.
Accordingly we can define g(v,)=v,. The system of
coordinates is then

e X=0,0,1 72, (2.7

(ii) 5=0. From the equation G,=f(k/g) we see that
G=cv, + g(v,) and hence the coordinate system in this
case is

t=v,

t=v,, x=cv,+v,. (2.8)

One point that should be mentioned here is that the full
equation does admit a separable solution when the func-
tions A and B are exponentials and the new variables
are given by

(2.9)

with ad — bc #20. In our definition of separation, how-
ever, we require that in the associated coordinate
system the Eq. (1.2) can be replaced by two ordinary
(nontrivial) differential equations in each of the sep-
arable variables. Then only the subclass of coordinates
given by (2. 8) is admissible as strictly separable. We
accordingly make no further comment on the choice of
variables (2.9).

t=av, +bv,, x=cv,+dv,

In addition to considering separable coordinates for
(1.2) it is also of interest to consider R-separable solu-
tions of this equation. These are coordinates which
admit solutions of the form exp[Q(v,, v,)JA(v,)B(v,)
where @ is not expressible in the form g(v,) + k(v,) and
is not a constant. With the inclusion of such a multiplier
term ¢9, Eq. (1.2) for the product A(v,)B(v,) assumes
the form (2. 2) with an extra term qu added to the left-
hand side. The conditions for R-separability are the
same as for strict separability so that a,, =a,,=0.

The nonzero coefficients are given by

29, ;G _Gy

an = 'é? r 4= Gﬁ Gl Gi y Gy= iy )
2 (2.10
ay= M_QQ —Ql(i Gy 9},1 + Q.
Gl Gl Gl
The conditions for separability then become upon
writing @ =R +iS (R and S real)
1/G, =1 (v,)/g,(vy), (2.11a)
2Rl/G2 :fz(vz)w(v1)a (2.11b)
(25,/G3) ~ (G,/G,) = v )K(v,). (2.11c)
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Equation (2. 11b) allows us to take R =0, since its solu-
tion is of the form 7,(v,) +7,(v,). The remaining con-
ditions simplify to

SZ

'J'Gi -8, gl +S, =f2(vz)q(vl) +p(v2), (2.12a)
§1.L _GJJ. 2

2 T Y17 A8 T 2 1 2/ .
s S e =f*(v,) (v,) + s(v,) (2.12b)

[Note: g,(v,)=0,8(v,) for some g.] From (2. 11a) the
form of G is G=g/f+ h(v,) and g+ const. We are then
free to take g=v,. From (2. 11c) we see that

231=_}f%vl+)’—jz+x. (2.13)
We can therefore write the form of S as
S= —}-cz-—v";+—hz—v (2.14)

T 4f3 2f
[Remember that terms of the form z(v,) + k(v,) in the
expression for S can be dropped as they do not contribute
to strict R-separation. | We now evaluate the

possibilities.

(i) f=const. Then we can put f=1. Equation (2.12a)
implies h,, =2a+0. Without loss of generality we can
then take h=avi, The corresponding coordinate system
is

t=v,, x=v,+av: a>0, (2.15)

and S =av,v,.

(i) f,/f*= - a+0. In this case we can take f=1v;1/2,
the constant a being absorbed in the definition of the
variable v,. Substitution into (2. 12a) then requires
by, == $bv3%/2 for some constant b, so that

h=0bv,'% + cu,. (2.16)

We may take b =0 by redefining v,. The resulting co-
ordinate system is then

— — 1/2
l=v,, x=v0,'"*+cv,

with

(2.17)

S=%cvw,'2,
This is seen to be a generalization of the coordinate
system (2. 7).

(iii) f,/f3+ const. In this case, substituting into (2. 12a)
we obtain the equations given below as requirements for
the functions f and #:

ff22—2f§:af6, (2. 18a)
hor=B8f° (2.18D)
with «, 8 real constants, We consider two possibilities.

(1) @=0. In this case f=av;' and h=b/v,+ cv,. In
particular, we can take a=1 and ¢ =0 effectively ab-
sorbing ¢ into the definition of v,. The resulting co-
ordinate system is

t=uv,,

x=1,0,+ ;b- b>0, (2.19)

2
with

S= 10,02 = by, /20,.
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(2) ¢ #0. In this case (2. 18a) has the solution

f=(avi+5)?/? (2. 20)

and h has a solution of the form k= c(av2+ b)/2 + dv,.
We can put ¢ =0, effectively absorbing this term in the
definition of v,. This results in two distinct types of co-
ordinates depending on the relative sign of a and b.

(@) t=v,, x=v,VI+Z +dv, (2.21)
where

S=3vv,+ $dv, VI + 12
and
(B) t=v,, x=v,Y1-12 +dv, (2.22a)
with

S=-%0v%v, + $dv, V1 =13,

t=v,, x=v,VUZ-1+dv, (2.22b)
with

S=;v2v,+ $dv, Wi 1.

The coordinate system (b) is the only system which re-
quires two distinct parametrizations to cover the entire
range of variation of v,. This then exhausts the classi-
fication of all coordinate systems which are R-separable
and separable for (1.2). In particular, it is to be noticed
that in each case the operator X =09 +i2, can be written
X =f(v,, v,(L + K) where L and K are operators in v,

and v,, respectively. In particular, K is a first order
operator such that XKu =0 and so can always be ex-
pressed as a linear combination of the generators K.

In Table I we give all the coordinate systems we have
found together with the associated operators K. It is
clear that in this classification we have not made

use of the full invariance group of (1. 2) apart from
translational invariance. If we do include this group in
our definition of equivalence all the coordinate systems
we have found are equivalent to ones whose representa-
tive basis defining operators are one of the forms (1. 14).
In particular, we see that under this equivalence more
than one coordinate system may be on the same orbit.
This is a consequence of the fact that the group action
has not been accounted for in the classification of sep-

TABLE 1. Separable coordinate systems for the Schrdinger
equation Xu=0 and their associated basis defining operators.
(Note only the x coordinate is given as we always have t=1v,.)

Multiplier etS

Coordinate system Basis operator K

1. x=cvytvy, ¢=0 S8=0 K=K_,+cK_,

2. x=vy+tav}, a>0 S=avw, K=K _,—2aK,

3. x:vlzv‘%/2+cvz, S=%cvwh/? K=K3%-cK,

ceR

4. x=v, S=topl-bvy/20, K=K,+2bK_,
+b/vy, b=0

5. x=vV1+03 S=4vlv, K=K,-K_,~dK_,
+dv,y, d=0 +3dvV1+0}

6. x=v1—vi+du, S=-3%vl, K=K,+K_ ,+dK_;

+%d1)1‘\[1—l)2

x=v{/vl —1+dv,,

N S=é;vziv2+%dvl\/v§—1

d=0
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TABLE II. Separable coordinate systems for the heat equation
U,=U,, (for all multipliers S=0).

Coordinate system Multiplier Operator
1. x=vy 0 Kig

2. x=1)11121/2 0 K‘

3. x=v1v1‘+1)2 R=—%UZ’U% §+K_,_2
4. x=vy+5vd R=—}vw, K+ Ky

arable systems. In the next section we deal with those
bases corresponding to inequivalent orbits. In that sec-
tion we give the solutions of (1.2) in the corresponding
coordinates.

Finally, in this section we list in Table II the sep-
arable coordinate systems for the heat equation (1. 16)
corresponding to representatives of the inequivalent
orbits of basis defining symmetry operators.

3. ONE AND TWO-VARIABLE MODELS

We now show that the operators (1. 5) can be inter-
preted as a Lie algebra of skew-Hermitian operators on
the Hilbert space L,(R) of complex-valued Lebesgue
square-integrable functions on the real line. To do this
we consider ¢ as a fixed parameter and, in view of (1. 2),
replace 9, by id,, in expressions (1. 5). It is easy to
show that the resulting operators restricted to the do-
main of C*-functions with compact support and multi-
plied by ¢ are symmetric and essentially self-adjoint.
Indeed the operators (1.5) are real linear combinations
of the operators

.= ix%/4,

Ki=xd,+%

Kl‘_—ix/z’ Ko=t Kua=0, K.o=i2,
(3.1)

and iK,, iK*® are essentially self-adjoint. Moreover,
when the parameter ¢ is set equal to zero, K, becomes
K and K°® becomes k°. It follows that the operators
Ky K, satisfy the commutation relations (1. 6).

From Stone’s theorem!® we know that to each skew-
Hermitian // € (; there corresponds a one-parameter
group U(a)=exp(at/) of unitary operators on L,(R). This
group in turn acts on (; via K — U(a)KU(- a). In parti-
cular, one can easily verify that

lexp(tK )] K ,lexp(~ tk ) ]=K,,
lexp(tk ) K3 [exp(- K )] =K>.

Thus if f € L,(R) then u=exp(tK_,)f satisfies u,= K ,u
or iu,=—u, (for almost every ¢) whenever f is in the
domain of K, and u(0)=7. Also it is easy to show that
the unitary operators exp(aK)

=exp(tK_,) exp(a k) exp(- tK ) map such a u into v
=exp(a k)u which also satisfies v, = K_,v. Thus the
unitary operators exp(aK) are symmetries of (1.2).

(3.2)

Later we will show that the operators £,, X*® generate
a global unitary representation of the group G on L,(R).
Assuming this for the moment, let U(g), g€G, be the
corresponding unitary operators and set T(g)
=exp(tK_,)U(g)exp(-tK_,). Again it is easy to demon-
strate that the T(g) are unitary symmetries of (1. 2) and
that the associated infinitesimal operators are

K=exp(tK ,) K exp(-tK ,).
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Now consider the operator / ;= K, — K, =10, - ix?/4
€G . If f € L,(R) then u({)=exp(t/ ,)f satisfies u,=/ u
or iu,=-u, +x*u/4 and u(0)=4. Similarly, the unitary
operators V(g) =exp(t/ ,)U(g) exp(-t/ ,) are symmetries
of this equation, the Schrodinger equation for the har-
monic oscillator, and one can verify that the associated
infinitesimal operators exp(t/ ,) K exp(-£/,) can be ex-
pressed as first order differential operators in ¢ and «.
Continuing in this manner we consider the operator
[2=Ko+ Ka=10,,—ix%/4c . If f € L,(R) then u(z)
=exp(t/,)f satisfies u,=/ ,u or iu,=—u, - x°u/4 and
u(0)=f. The operators W(g)=exp(t/,)U(g)exp(—t/,)
form the unitary symmetry group of this equation, re-
pulsive harmonic oscillator potential, and the associated
infinitesimal operators exp(f/ ,) X exp(—t/,) are first
order in x and ¢{. Finally, we consider the operator //
=Ko— K1=10,~1ix/2€(. If fe L,(R) then u(t)=exp(t4)
satisfies u,= //, or iu,+ —u, +xu/2 and u(0)=f. The
unitary operators X(g) =exp(t4/ )X exp(-t//) are sym-
metries of this Schrodinger equation for the linear po-
tential and the infinitesimal operators exp(t4/)K exp(- t4/)
are first order in x and ¢.

Note further from (1. 14) the operators X ., /4 /[ 2
and K, - K, corresponding to the free particle, attrac-
tive and repulsive harmonic oscillator, and linear po-
tential Hamiltonians, lie on the same G orbits as the
four representatives X ,, /4, K5 and K, + K.,, respec-
tively. Thus these four Hamiltonians correspond exactly
to the four systems of coordinates in which Eq. (1.2)
separates. We see that these Hamiltonians form a com-
plete set of orbit representatives in ¢ in the sense ex-
plained following Eq. (1. 15).

Note that if two operators lie on the same G orbit then
the first operator is unitary equivalent to a real con-
stant times the second operator. Thus two suitably nor-
malized operators on the same orbit necessarily have
the same spectrum. In particular, if K, K’ € ¢ with
K =U(g)k U(g™") and the self-adjoint operator i has a
complete set of (possibly generalized) eigenvectors
(%) with

iKAh=Mw (fu F)=0,, (3.3)
where

(hy, b= [ h(x) B(®)dx, h;e Ly(R), (3.4)
then for f} = U(g)f, we have

K =2 (L FL) =6, (3.5)

and the f; form a complete set of eigenvectors for i 4’.'°
These remarks imply that, if we wish to compute the
spectrum corresponding to each operator K € ¢/, it is
enough to determine the spectra of the four Hamiltonians
listed above. Moreover, we may be able to choose
another operator X on the same G orbit as a given
Hamiltonian such that the spectral decomposition of X
is especially easy. The spectral decomposition of the
Hamiltonian and the corresponding eigenfunction ex-
pansions then follow from those of K by application of

a group operator U(g).

As a special case of these remarks consider the
operator K_,=id,. If {f,} is the basis of generalized
eigenvectors for some operator K € ¢, then {f}(f)
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=exp(tK_,)f,} is the basis of generalized eigenvectors
for K=exp(tK ,) K exp(—-tK ;) and the f/() satisfy the
equation ¢u,=—u_ . Similar remarks hold for the other
Hamiltonians.

We begin our explicit computations by determining the
spectral resolution of the operator / ;,=K_, - K. The
results are well-known. ** The eigenfunction equation is

i sf=M, (=0, +x2/4) f=)\,
and the normalized eigenfunctions are
FiXx)=[n1 V2m 2n)1 /2 exp(- x%/4) H (x27/%),
n=0,1,2,..., (fY fP)=5,,

where H (x) is a Hermite polynomial.

(3.6)
A, =0+ 3,

It is now easy to show that the X operators expo-
nentiate to a global unitary irreducible representation
of G. Indeed, from the known recurrence formulas for
the Hermite polynomials one can check that the opera-
tors £ ,,/ ;s [ ; acting on the f ¥’ -basis define a reducible
representation of sI(2, R) belonging to the discrete
series. The value of the Casimir operator is
H/2+/%-/%=-3/16. As first shown by Bargmann, 2°
this Lie algebra representation extends to a global
unitary reducible representation of SL(2,R). Similarly,
the operators §,, §,, /4, acting on the f*'-basis define
the irreducible representation (A, !}=(-1, 1) of the Lie
algebra of the harmonic oscillator group S.?! Again this
Lie algebra representation is known to generate a global
unitary irreducible representation of S.?!'?2 Finally,
since every unitary operator from SL(2,R) can be
written in the form exp(a/ ,) exp(f/ ,) exp(y/ ,),%° where
exp(a/ ,) also belongs to S, and since /, is a first order
operator whose exponential is easily determined, we
can check that the identity (1.12) holds in general. Thus
our representation of G extends to a global unitary rep-
resentation U of G which is irreducible since U|S is
already irreducible. The matrix elements of the opera-
tors U(g) in the 'Y -basis can be found in numerous
references, e.g., Refs. 20, 22, 23.

The unitary operators U(g) on L,(R) are easily com-
puted. The operators
Uu, v, p)=explp + (uv/4)] £ exp(u§,)exp(v )

defining an irreducible representation of W take the
form
uv + ?ﬂ

(U, 2,0)7 )31 = exp o + 22 2>]f(x+v), fELyR).
(3.7

The operators U(A), A €SL(2,R), are more complicated.

From Ref. 24 (p. 493) we have

exp(ak .,)f (x)
=1l.i.m. ) - (x-y)?/4i d
b j; exp(~- (x - y)*/4ial f(v) dy, 3.8)
and it is elementary to show
exp(b K°) f (x) = exp(d/2) f (°x),
exp(cK ;) f (x) = exp(icx®/4) f (x). (3.9)

Relations (1. 11) imply
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exp(¢ [ ,)=exp(tanhp ) exp(sinh¢ coshp £ _,)
X exp(~Incoshp X ,),
so (3. 8) and (3. 9) yield

exp[(ix?/4) tanh ¢ ]
(4w sinh )t /2

exp(¢/ ) f(x) =

X 1.i.m. f exp[- (x = v cosh¢)?/4i sinh¢ coshe] £(y) dy.
(3.10)
A similar computation for exp(§/ ,) gives

s a2
exp(8/ ) f(x) = S}%%Si/n‘lg)___cl%ﬂ

x1.1. m. f exp[- (y% cosB — 2xy)/4i sind] f(v) dy.

(3.11)

Using (3. 8) we see that the basis functions £’ (x) map
to the ON basis functions F{:’(x, £)=exp(tK ) f,f:’(x) or

A
(1) —[nton 2\]-1/2 1 x ¢ - —~—.x2
F,‘" (x, ) =[n12"V2r(1 + )] exp<4 T+8 3157

-, arctant)H,,[x/F 21+ )] (3.12)

which are solutions of (1.2).

Next we study the spectral theory for the orbit con-
taining the operators X _, + K, (repulsive oscillator) and
K3 Since the spectral analysis for X, is elementary we
study it first. {The corresponding results for Kat Ko
then follow by application of an appropriate group
operators U(g). ] The eigenfunction equation is

ik f=N, KP=x8,+%.

The spectral resolution for this operator is well-

known. 2?5 It is obtained by considering L,(R) as the direct
sum L,(R +)® L,(R ~ ) of square-integrable functions on
the positive and negative reals, respectively, and taking
the Mellin transform of each component. Then iK,
transforms into multiplication by the transform variable.
The spectrum is continuous and covers the real axis with
multiplicity two. The generalized eigenfunctions are

1 .

D5y = —— 5 -1l-1/2’ L ER, 3.13
fh ( ) m & ( )
(Fi25 P9 =8k =N), (L™, £.2%)=0,

where
x¢ if x>0 0 if x>0
%= ’ x¥= .
0 if x<0, (-x)* if x<0

From (3. 8) we find exp(tX_,) f ?* = F{?*(x, ) where

2 ,
F®*x, t)= exp(%t— + Iy ﬂr—)

4 8
(2”-“/2«»1/4 . i 1(—966"'/4)
Xt I(5=-)D;, - 5 | ——,
= O A
t>0, (3. 14)

I'(z) is a gamma function, and D (z) is a parabolic cy-
linder function. ° [These results follow from (3. 8) by
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moving the integration contour from the positive real
axis to a ray making an angle of n/4 with the real axis.
We can also use the fact that we know the differential
equations characterizing the function (3. 14).] Also, we
have

(a) F;2)+(x, t):Fi§)+(xa - t)y

(3.15)
(b) F;Z)- (x’ t):F;2)+ (—x; t)'
It follows immediately from (3. 13) that
(Fiz)*,Fzz)*)Iﬁ(H—X), (F{Z)*, Fiz)$)=0. (3_ 16)

Application of these orthogonality and completeness
relations to expand an arbitrary fc L,(R) yields the
Hilbert space version of Cherry’s theorem, 1°-2¢ which is
an expansion in terms of parabolic cylinder functions.
Note that our expansion is simply related to the spectral
resolution of the operator K®=213,+ x9,+ $ = 2itd
+x0, + 3.

The next orbit we consider contains the operators
K .o+ K, (linear potential) and £, + K _,. Since the spec-

tral analysis for the second operators is simpler, we
study it. The eigenfunction equation is

i(K2+K-1)f:Xf’ /(2+/<_1=ix2/4+3x.

The spectral resolution is easily obtained from the
Fourier integral theorem. The spectrum is continuous
and covers the real axis, and the generalized eigen-
functions are

B(x)= \/—%— exp[-i(xx +x°/12)], A eR,

(F2, f) =0(p =2).
We find that

(3.17)

(3) _ i 1/6 if 1 2_ U\
F(x, ) =exp(—in/4) 2 exp[4 ( 82 + v,0? %) o

X Ai[22/3(4v, + )] (3.18)

with v, and v, as in Table I, system 4 with b=3.

Ai(z) is a Airy function. These are the basis functions
for the operator K, +K_, =—4#23_ + (1 - tx)9, — t/2
+ix%/4. For the orbit containing K_, the complete set of
eigenfunctions is
reR,

o= ?%: exp(- ixx), (3.19)

27

with the usual orthogonality properties. It is not hard to
show that

F®(x, t)= \/—2_1— expli(A2f - Ax)]. (3. 20)

T
The case of the remaining orbit K, differs so little from
this last case that we do not treat it here.

If {f,(x)} is a basis of (generalized) eigenfunctions of
some K € (; and F,(x, {}=exp(tK ) f,(x) then F,(x, )
=exp([T~t]K_;) F\(x,t) and we have the Hilbert space
expansions

kx =y, 1)= [ F\(x, ) [3) d,
k(x =y, 7=t)= [ Fy(x, )F(3, D) d
where the integration domain is the spectrum of i and

(3.21)
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B(x, )= exp(~ x% /4it)

1
varit
is the kernel of the integral operator exp(¢X_,). These
expansions are known as continuous generating
functions, "8

4. OVERLAP FUNCTIONS

In this section we compute the overlap functions
(fi?, £') which allow us to expand eigenfunctions f{¥
in terms of eigenfunctions f{. Since (U(g)fY’, U(g)f{")
=(f{?, £9?), the same expressions allow us to expand
eigenfunctions U(g) " in terms of eigenfunctions
U(g)f!”. We give here then those overlap functions cor-
responding to bases f{? that we have taken as standard:

+ 2)n+m-1/2 I‘(i)\/z + %4_ %n)
2nv2™ !

3 .
szl(—%n; %_%ny E—'LK/Z—%VL;%)-

(D, o=t (4.1)

For the calculation of the overlap functions (f {i’, &
it is convenient to give a generating function rather than
an explicit expression. The result is

22/3exp[—i(% +x + V2y)] AL[22/3 (1 —ix - iV2y)]  (4.2)
_ S (2ip)" ) (3)
=L U A

This expression follows from the form of the generating
function of Hermite polynomials given by Ref. 10.

(A2, fi®)=[n! (- 2] /2 exp(= ) H (VER),  (4.3)
( ;?)’f{ZN)
_ _é_IT_T_(IZi)(lls-n/m g rf{(» "::;)/3] + 3t
X [exp(5éw/8)n’ ](12)"/3, (4.4)
where
(7, £ = (=12 (fD, 15, (4.5)

(F2, f19)=22/3 Ai(22/3[x = 1)),
(S0, 729 = 5o exp(r in/n/2) T(= 17 + 1230y 7,
(4.6)

The general overlap function relating an eigenbasis on
one orbit to an eigenbasis on another orbit is of the
form (U(g) f{?, f/"). Indeed, a general eigenbasis {1}
on orbit i can be expressed as h{¥ =U(g,)fi". Thus,
(7, ) =(U(g) £, Ug) F ) = (U(gg, ) s f )
These expressions are known as “mixed basis matrix
elements. 2" Their knowledge allows us to expand any
eigenfunction of an operator in ¢ in terms of eigenfunc-
tions of any other operator in ;. Since the inner product
is invariant under the unitary operators U(g), the
knowledge of the matrix elements for fixed ¢,j, and g
can lead to a variety of different expansions. We shall
not tabulate these elements here but merely note that
they are of some interest. Indeed, they yield Hilbert
space analogies of the analytic function expansions
derived by Weisner in Ref. 6. However, the Hilbert
space theory is richer and more complicated since one
can derive expansions in all bases, not just Hermite
function bases as used by Weisner.
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As an example we give the mixed basis elements:

(exp(tK )Y, ) =(11Y, exp(=tK..)f ")

B (:l: 2)miu,-1/2 (1 + it)iu /2 exp(_ i)\n arctant)
B am/2mT (1 - it)n/2riul2n/4

w12
XI‘<2+4+2>

s .
x2F1<_" 1 g __’_“__'_‘.ut_)

These elements allow us to expand Hermite polynomials
as an integral over parabolic cylinder functions and
parabolic cylinder functions in series of Hermite
polynomials.

5. THE EQUATION ju, + uy -cu/x* =0

Here we apply the methods discussed in the previous
sections to the differential operator

Y=i9,+03,,-c/x% c=0. (5.1)

We first compute the maximal symmetry algebra of the
equation Yu=0. Thus, we find all operators L, Eq.

(1. 3), such that Y(Lu)=0 whenever Yu=0. A straight-
forward calculation shows that the symmetry algebra
H°¢ is three-dimensional with basis

K,=03, K,=—129,-txd, —t/2+ix%/4,
K*=2t3,+x0, +1/2

(5.2)

and commutation relations
(K3, K,,|=%2K,,, [K, K,l=K5

For the basis L; where

L,=K ,+K,,

L,=K3, L.,=K,-K,,

we have the relations
[L,,L,]=-2L,, [L,L,]=2L, [L,L,]=-2L,.
(5.3)

It is clear that the real Lie algebra generated by these
basis elements is sI(2, R). The corresponding group
action of SL(2, R) on functions f(x, t) is given by the
operators (1.10), and the explicit relation between the
group and Lie algebra operators by (1.11).

The group SL(2, R) acts on sl(2, R) via the adjoint
representation and splits the Lie algebra into orbits.
Let

K=AK,+A_ K_,+AK3csl(2,R)

and set o =A,4_,+AZ. It is straightforward to check that
a is invariant under the adjoint representation and that
K lies on the same SL(2, R) orbit as a real multiple of
exactly one of the three operators in the following list:

Case l(a<0): K,-K,=L,,
Case 2(a>0): K3,
Case 3(a=0): K,.

(5.4)

We see that there are essentially three orbits.

The evaluation of all separable coordinate systems
proceeds as for the free particle case except that now
we have the added restriction that G,/G = h(u,). The re-~
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sulting coordinate systems, multipliers, and basis de-
fining operator are then listed in Table III.

In analogy with our argument in Sec. 3 we can inter-
pret the operators (5. 2) as a Lie algebra of skew-
Hermitian operators on the Hilbert space L,(R +) of
complex-valued Lebesgue square-integrable functions
f(x) on the positive real line, 0 <x <, This is ac-
complished by considering { as a fixed parameter and
replacing 3, by id_, —ic/x° in expressions (5.2). The
resulting operators when multiplied by i and restricted
to the domain of C* functions with compact support in
R+ are via Weyl’s lemma, *® easily seen to be essential-
ly self-adjoint provided ¢ = 2. In the remainder of this
paper we assume that the constant ¢ satisfies this in-
equality. The operators K,,, K® are real linear com-
binations of the skew-Hermitian operators

Koa=1id,, —ic/x® K,=ix®/4, K®=x3,+1/2 (5.5)

to which they reduce when ¢t=0. Similarly, the skew-
Hermitian operators

L1:K3:xax+%, LZZK_2+Kz—_—iaxx_ic/x2+ix2/4’
(5. 6)
[3=Ka— Ke=10,,—ic/x* —ix*/4

satisfy relations (5. 3) and the L; reduce to / ; when
t=0.

In analogy with Sec. 3, one finds
exp(tk ) K exp(— LK ) =K,
exp(tK ) [ jexp(—tK ;) =L;.

Thus for any fe L,(R +) the vector u(¢) =exp(tX_,)f
satisfies u,= K _,u or iu,=—u, + cu/x*> and u(0)=f. Also
the unitary operators exp(aK)

=exp(tK_,) explak)exp(—tK ), K €sl(2,R), map solu-
tions of the equation u,= £ _,u into other solutions.

(5.7

We will soon demonstrate that the operators £,,, K°
generate a global unitary irreducible representation of
the universal covering group J of SL(2, R) by operators
U(g), g€J, on L,(R+). Assuming this we see that the
operators T(g)=exp(tX_,)U(g)exp(—~tK _,) define a group
of unitary symmetries of the equation Yu =0, with as-
sociated infinitesimal operators K = exp(t K _,)K exp(— tK ).
This discussion shows the relationship between our Lie
algebra of A -operators and the Schrédinger equation for
the radial free particle.

Next consider the operator / , € sl(2,R). If f € L,(R+)
then u(f)=exp(t/ ,) f satisfies u,= / ;u or iu,=—u_,
+ cu/x? + x*u /4, the Schridinger equation for the radial
harmonic oscillator. The unitary operators V(g)
=exp(¥/ ,)U(g)exp(- 1t/ ,) are symmetries of this equation
and the associated infinitesimal operators

TABLE II. Separable coordinate systems for the equation
Yu=0.

Coordinate Multiplier ef$ Basis operator
1. x=v4 S=0 K,

2. x=vpl/? $=0 K3

3. x=v, S=zvw} K,

4, x:1)1V1+U2 S=ivzv% K2"K-2

5. x=vVill—v) S=1dvpw} Ky+K.,
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exp(!/ ;)K exp(— !/ ,) are first order linear differential
operators in x and ¢{. Similarly, if f € L o(R +) then u(¢)
=exp(l/ ,)f satisfies u,= / ,u or fu,=—u_ + cu/x*

- x%u/4, the Schrodinger equation for the repulsive
radial oscillator. The operators W(g)

=exp(t/ ,)U(g) exp(—t/ ,) determine the symmetry group
of this equation and the associated infinitesimal opera-
tors exp(l/,) K exp(—t/ ,) are first order in x and ¢.

From (5. 4) it follows that the operators X _,,/ 5,/
corresponding to the radial free particle, attractive and
repulsive harmonic oscillator Hamiltonians lie on the
same J orbits, as the three orbit representatives f,,

/ 5 and K3, respectively. Our three Hamiltonians cor-
respond to the three J orbits of s{(2, R). The remarks
concerning expressions (3. 3)—(3.5) and the invariance
of spectra for operators on an orbit carry over without
change to this case except that the inner product is now

(hy, 1) = [ Iy () (%) dx, (5. 8)

Note that if {f,} is the basis of generalized eigenvec-
tors for some K € sl(2, R) then {f}(f)=(exp tX_,)f,} is
the basis of eigenvectors for K =exp(tX _,) K exp(—tK _,)
and the f}(/) satisfy the Schrédinger equation for the
radial free particle. Similar remarks hold for the other
Hamiltonians.

hy € Ly(R+).

We first present the well-known results for the spec-
trum of / .. The eigenfunction equation is

if f=Nf, (=0, tc/XF+xP/)f=\f
and the normalized eigenfunctions are

(1) =  mi2e2
T(n+1+u/2)

(5.9)
\,=—2n—-p/2-1,
n=0,1,2, «,

CZ(IJ'Z"'l)/4a “’23’

where L{*'(z) is a generalized Laguerre polynomial. The
{£i0} form an ON basis for Ly(R +).

Using the recurrence relations for the Laguerre poly-
nomials one can check that the operators / ; acting on
the f'¥ basis define an irreducible representation of
sl(2, R) belonging to the discrete series. The Casimir
operator is 5{/3+/%-/2)=-3/16+c/4. As is well-
known, 20:23 this Lie algebra representation extends to a
global unitary irreducible representation of J. The
matrix elements of the operators U(g) in a £’ basis can
be found in Refs. 23 or 29.

We now compute the operators U(g) directly. Clearly,
exp(ak®)f(x) = exp(a/2)f(e*x),
exp(aK ;) f(x) = exp(iax®/4) f (x).

Furthermore,
exp(BLa)f(x).—_eXp(:inlﬂé;ln;lz)/4 Li.m. f (xy)/2
o]
xexp( —(x? +y2){ cotBD
x
/2<2,S§13,)f(y)dy, 0< 18l<m, (5.10)
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where we take the upper sign for 8> 0 and the lower for
B<0. [Here J,{(2) is a Bessel function. ] The additional
relation exp(n/ ,) = exp[-in(1 + p/2)] allows us to deter-
mine exp(8/ ;) for any 8. To prove these results we ap-
ply the integral operator (5. 10) to an f *’ basis element,
and use the Hille—Hardy formula?? and the fact that
exp(B/ )Y =exp[-i(2n+ /2 +1)B]f (Y to check its
validity. Since (5.10) is valid on an ON basis and
exp(B/ ;) is unitary, the expression must be true for all
fEL(RH).

The group multiplication formula
expy K ., = exp(— sind cosb K ,) exp(Iln cosdk®) exp(6/ )
with y =tané and expressions (5.9), (5. 10) easily yield

exp[¥(1/4)1r(u+2) Lim. / (xy)/?

21yl
X exp(i(xz; yz))J,L /2(272), |> ) dy,

exp(yK o) f(x) =

(5.11)

where we take the upper sign for y > 0 and the lower for
v <0. A similar group theoretic calculation gives

G/Hm(p+2)] ., . °
2 sinho | 1‘1'“"/0 (x9)/?

exp[¥

exp( ¢/ ;) f(x) =
X exp(% (2% +9?) coth¢)

xy
Xd, 2 (m) ) dy.

From (5.11) we find that the basis functions f{¥(x)
map to the ON basis functions FyY(x, )= exp(t/(_z'Sf‘”( )

(5.12)

Fy(x, 0
2 (u+l) /4
=2(- Drexpls i/ + 2] (127)

X(t - i)-u/4-3/4-n(t + i)u/4+1/4+n

)
+ 12

<
for t>0

1 2 1
/22
><exp<4 12 (- 1+zy)) Lk <2 1
(5.13)
which are solutions F of YF=0.

The J orbit containing the operator / , (repulsive
radial oscillator) also contains X® so we merely study
the spectral theory for 3. The results are well-known.
The eigenfunction equation is

K3 f=2\f, KP=x8,+4.

The spectrum is continuous and covers the real axis
with multiplicity one. The generalized eigenfunctions
are

@y :_x-n-llz’
fi2(x) N
(F2, FP)=06(1 =)

Again using (5. 11) we find F,\®(x, {) = exp({ K,) f{¥(x)
where

AER, (5.14)
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; 1
F{z’(x, t): L r(t\/z + u/4+ 2)

VBr  D(1+p/2) exp[¥ (7/4) (ip +i +2))

(5. 15)
. - ix? ix?
Xtu/z-1/4(x2/t) 1/4 exp<—8t> M(t')./2).(u/4> (_t )

for tZ0. Here M, ,(2) is a solution of Whittaker’s equa-
tion. 1° If follows from our procedure that the basis
functions satisfy
(F®, F2)=58(u-1)

and can be used to expand any fe Ly(R +).

Finally, the orbit containing X _,, corresponding to
the radial free particle, also contains £,. The spectral
theory for £, is elementary because K, is already dia-

gonalized in our realization. The generalized eigen-
functions are (symbolically)

FP=0(x=2), Ko P =02/,

The spectrum is continuous and covers the positive real
axis with multiplicity one. We have

F{®(x, t)=exp(tK _,) f¥(x)

A =0,

or

F;”(x, 1) = eXp(:Fi(zﬂl/t‘Il)(# +2) (x)\)l/z

(%% +22) X\
xe"p( rrand RIVACITY

with (F{®, F{*)=8(n ~1). Expansions in the basis
{F{®} are equivalent to the inversion theorem for the
Hankel transform. The F{® are basis functions for the
operator K,.

(5.17)

Each of our bases has continuous generating functions
of the form (3. 19) where now

Fx,y, 1) = T iz(Tt/f)(u +2)

i(x® +9%) xy
xexp(———4t : Ju/2 El_tl

The overlap functions (f,, /) have the same
significance as in Sec. 4. Because of the simplicity of
the basis f{* the only overlap of interest is

(fw f(z))_L(I"(n-i—l-F%u.)Z“ 12 T(N/2+ u/4+ 1)
An? /a2 ! T(1+1i4)

(5. 19)

(xy)t/2

(5.18)

(see Ref. 8).

XZFI(—n, —lzl +f—;’-+%; 1+%u;2>.

In particular, we notice that the overlap functions are
dependent on the representatives 7, /.7 that have been
chosen on each orbit. From this we see that the most
general way to define an overlap function is as the mixed
basis matrix element (f{", U(g)f'") where g is a gen-
eral group element. This problem has been treated for
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the group SL(2, R), Ref. 27, where a corresponding
group parametrization has been given for each choice

of i#j in the above expression. In particular, the re-
sulting expressions for the mixed basis matrix elements
proved quite tractable to calculate and amounted to the
calculation of the mixed basis matrix element of a one
parameter subgroup in each case. We refer to the
original article®” for further details.
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We show how the zeroes of the Jost function for an s-wave attractive exponential potential are
distributed. In particular, we use known results, especially some of Coulomb’s, on the zeroes of
Bessel functions to demonstrate that there are no zeroes for complex momentum k =k,+ik, (k,50,

k,70).

During a recent numerical investigation of the inverse
scattering formalism of Gel’ fand and Levitan,® we
searched for efficient methods of evaluating the driving
term of their integral equation for the kernel. The driv-
ing term is related to an integral? whose integrand in-
volves the Jost function, f,(k), as |f,(®}|-2. A desire to
deform the contour led us to investigate how the zeroes
of the Jost function are distributed in the complex &
plane. A finite-range potential’ s distribution is discuss-
ed by Newton, * where references to the original papers
may be found. Sartori? has considered the case of s-
wave potentials which vanish at infinity faster than any
exponential, but his approach does not appear to be gen-
eralizable to potentials which vanish slower at infinity.

In this paper we determine the zero distribution for a
s~wave attractive exponential potential. Since the
Schrédinger equation is analytically solvable in this
case, ® it continues to be of interest in scattering
theory.

It is well known that the S matrix may be expressed
in terms of the Jost function as

S(k) = e*1o® =f(k)/f(~ k). (1)

We follow the convention used by Newton® here and the
angular-momentum subscript is suppressed since we
only deal with s waves.

Let us write the exponential potential as
V()= =Vyexp(~7/a), V,>0. (2)
Then, for the s wave the Jost function is’
f(k) =expl —iaklog(? V) T(1 + 2iak)d,, ,(2aVE/?).  (3)
We define Z=2aV}’/? and we note that Z is real.

The poles of f(k) come from the gamma function and
occur when

1+2iak=0,-1,-2, -+
or
k==in/(2a) for n=-1,=-2, -, @

These are the so-called redundant poles.? Equation (3)
shows us that, since the gamma function is never equal
to zero, the zeroes of f(k) are the zeroes of

J210(2) =0. (5)
Our task is to use what is known about Bessel func-
tions to find these zeroes. We use as a reference the
book by Gray and Mathews® and we consider the different
sections of the complex % plane. Some useful relations
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involving Bessel functions are contained in the appendix.
First, let v=2iak and let k=~ iy with ¥ >0, Hence
J(Z) =d,,,(Z) (6)

and for real Z such Bessel functions can have zeroes.®
These are the bound states.

Now let k be real and greater than zero. A proof by
contradiction!® leads us to f(¥) #0 for real k+#0. This is
a special case of a well-known general result, and it
can be derived in various ways. The point 2=0 is spe-
cial and although f(0) may be equal to zero for s waves,
this is not a bound state,!! It is also well known!! that a
Jost function has no zeroes, other than bound states, in
the lower-half & plane, For our particular case of a s
wave, attractive exponential potential, this result is
quickly seen with Eq. (A2) (with b=0 and C=1) and Eq.
(A3), or with Ref, 12,

We now enter the upper k plane., Let us first put k=iy
with ¥ >0, and define v=2iak= ~2ay. We momentarily
assume the potential is too weak to have a bound state.

As y increases toward plus infinity, v will pass
through negative integers, say —n. So we have

J(2)=(-1)J,(2),
Sopt(2) = (= 1)™,,1(2) = = (= 1), ,(2). (7)

When 7 is a positive integer, n=2iak leads to a k& which
is on the lower half of the imaginary axis. Since we have
assumed that there is no bound state, J,(Z) has the same
sign for all n. Hence Eqs. (7) show that J_(Z) and
J.,..(Z) have the opposite signs. Since J,(Z) is finite for
all v when Z2#0, J_,,(Z)has a zero between v =-n and
v=-=n-1, This means that J_,,,(Z) has an infinity of
zeroes and these are the virtual states. Thus, J,,,,(Z),
and hence f(k), equals zero an infinite number of times
for & on the upper imaginary axis. If bound states are
present then J,,,(Z) changes sign a finite number of
times, but J_,,,(Z) will still have an infinity of zeroes.
We remark that Coulomb!® has shown that the zeroes of
J,(Z), for v real, asymptotically approach the negative
integers, which are the redundant poles’ locations ac-
cording to Eq. (3).

Finally, we consider k=%, +ik, with k,>0 and &, #0,
For this case

v=2iak==2a|k,| +2iak,, (®)

so that Re (1) <0. We follow Coulomb*® and use Eq. (A2)
with b=1 and let C—~ ©, We assume v and Z are such
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that J,{Z) =0, and hence J,x(Z)=0. This means that the
right-hand side of Eq. (A2) contributes zero for b=1,
To evaluate the contribution as C—~ «, we need*

J(CZ)—~ (2/7CZ)' /2 cos(CZ —vn/2 —T/4). (9)

Equation (9) implies that the J,(CZ)J, (CZ) term goes
as C! when C—~ «, Thus, the leading term is the square
bracket of Eq. (A2). A bit of algebra shows that

XZ [J,,,(X2)d 4 (XZ) = J,(XZ)J 5 1 (XZ) . =

=X ¢~x

(1/m{cosl[n/2 + (v =v*)7/2] = cos[n/2 = (v ~v*)7/2]}. (10)

Hence

[2J(XZ)J,(X2Z) dX/X = (2/7) sin[(v = v¥)7/2)/ (17 = v*?),
(11)

Now the integrand of Eq. (11) is positive-definite;
while for Re(r) <0 and »? # v*2 the right-hand side of Eq.
(11) is always negative. We arrive at a contradiction,
which means that

Jaiax (2)#0 (12)

when % is in the upper-half plane and %k, #0. By Eq. (3)
we see that the Jost function has no zeroes in the same
region,

We have noted that for an attractive exponential poten-
tial, the s-wave Jost function is zero at bound states.
For k in the upper -half plane, f(%) can be zero only when
k is on the imaginary axis. Thus, there are no s-wave
resonances for this potential. This is an amusing con-
trast to the case of finite-range potentials,** where there
are an infinity of resonances; but is similar to the situa~
tion for a Hulthén potential,'® where there are no reso-
nances either. In addition, the exponential and the
Hulthéen potentials both have an infinite number of virtual
states, while finite-range potentials have only a finite
number,. ! These similarities lead us to believe the
above results may have generalizations, but attempts to
treat repulsive exponential potentials and Morse poten-
tials!® have not been successful yet.
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A consideration of the series definition!” of J,(2)
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shows that
Jox(Z) =(J ,(2))*

for a complex and Z real. Watson*® derives the following
helpful integral relationship:

[ RX2V8(x2) aX/X ={~[X2/(* = *?)]

(A1)

x[J,.,(XZ)J,x(X2Z) - J(XZ)J,4,,(XZ)]

+d,(X2)d, . (XZ)/(v + v*)}C. (A2)
We also invoke the relation'®
Toa(2)=(@/2) (2) = 52 1(2) (a3)

when we treat a particular case of Eq. (A2).
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An equation for the mean value of the contaminant (¥(x, )) is derived for the case when
Il Ly (x, ) x, )1 > 1K (x, )T &, 1)) : (¥, . The class of projection operators which pro-
duce this inequality is dictated by the following nonlinear stochastic equation:

Lotx, 0¥ (x, 1)) = Vy [ fax! dF Golx, 1 X', ) Sv (X, 1) b0 (&', ')V (T (7, D)
=K(x, )&, 1) : @&, NH+Kx, 8 [ [dx de Gy, # 1X’, )V (T &, 1)) ¢
x[ [dx” dt"Gy(x , | X", ") Sv ik’ , ) 6v (X", 7))V, (T X", 17)) + S(x, 1),

This is a valid approach when the reaction time is much greater than the transport time,

Ttrm « Tronct-

1. INTRODUCTION
The solution of the nonlinear stochastic equation!
[Lo(x, )+ Ly(x,t, w) ¥ (x,¢,w)
=S(x, 1) + K V(x, t)¥(x, £, w) + K(x, ¥ (x, t, ) : ¥(X, ¢, w)
1.1)

is extremely important, especially in its applications to
the transport of contaminants in which chemistry is oc-
curring., In this formal notation, S(x,?) are the source
and/or sink terms which are independent of the random
variations and K4)(x, f) and K(x, t) are the reaction co-
efficient matrices for the unimolecular and bimolecular
processes. Since the concentrations ¥(x, {, w) are con-
taminants, their effect on the temperature field is as-~
sumed to be small and hence, the K’s are not dependent
on the random variations, The operator Ly(x, ) corre-
sponds to a deterministic operator, e.g., the stream-
ing operator D/Dt, while L,(x,,w) is a stochastic
operator (e, g., L, might be dv(x, ¢, w)- V, which is the
random part of the convection term and in a well-known
averaging process® approaches the eddy diffusivity
term). The variable w is assumed to span the sample
space § and associated with it is the normalized prob-
ability density function P(w). Consequently, when one
solves Eq, (1.1), the only meaningful physical observa-
ble is the moments of contaminants and, in particular,
its average value

(¥(x, )= [ ¥(x,t, w)Pw)dw.

Since the equation is nonlinear and, in particular,
quadratically nonlinear, due to the possibility of bi-
molecular kinetic processes, normal perturbation the-
ory breaks down due to secularity®!® and it is extreme-
ly inconvenient to use due to the nonlinear processes,
coupled to the fact that averaging must be performed
on each term of the series. Thus, three problems
arise: (1) how to truncate the series so that the equation
generated adequately represents physical reality, (2)
what is the proper averaging process, (3) the equations
which are derived should be computationally feasible
to solve or demonstrate some use for plausibility
arguments,

-8

A particular type of nonlinear equation of this type is
the well-known Navier—Stokes equation. The similarity
is that both are quadratically nonlinear, (The literature
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on this subject abounds, 11~1% especially notable is the
work of Kraichnan. 1¥%°) The problems which one en-
counters are the three mentioned above.

In this paper we shall briefly review and discuss the
normal perturbation and hierarchal approaches to this
problem, and then apply the renormalized projection
operator (RPO) technique to this class of equations.
Previously, we applied such an approach to the linear
stochastic equation®

[Lo(x, £) + Ly(x, ¢, w) ¥ (x, ¢, w) = S(x, ) (1.2)

and derived approximate solutions to such an equation
and arrived at the nearest neighbor and Kraichnan equa-
tions via a diagram technique and RPO technique.

2. THE PERTURBATION AND HIERARCHICAL
APPROACH

Returning to Eq. (1.1),
[Lo(x; t) - K“)(x’ t) +€L1(x; t’ w)]‘ll(x’ t, O))
= S(x, ) + MK (x, 1) ¥ (x, £, w) : ¥(x, t, w), (2.1)
we have introduced the dimensionless parameters € and
A, which are measures of deviations from the equation
Ly(x, )¥(x, t) = S(x, £). Obviously, when € and A are much

less than unity, the Neumann expansion is valid, and
one need only retain the first few terms in the series.

For the sake of convenience, let us redefine Ly(x, f)
- K%(x,1) to be Ly(x,?). Now the series expansion
becomes

¥(x, t, w)
= \I[O(xi t: w) + [LO(X’ t) + ELl(x) t’ w)]-is(x’ t)
+[Ly(x, O) + €L (x, t, w) K (x, ) ¥ (x, ¢, ) : U(x, t, w).
(2.2)
The terms ¥,(x, £, w) + [Ly(x, £) +€Ly(x, {, w)]"1S(x, £) cor-
respond to the solution of Eq. (2. 1) without the bi-
molecular reaction term; namely, [Ly(x,?)+L{(x,t, w)]
X n(x, £, w) = S(x, £), These terms are defined by

¥ ,(x, t, w), which is basically the solution of the trans-
port processes coupled to unimolecular kinetics. Hence,

‘Il(x’ t’ w) = ‘I’T(x, t, (4)) + )‘[Lo(x; t) +GL1(x1 t’ w)]-l

xK(x, )¥(x, t, w): ¥(x, {, w). (2.3)

Copyright © 1974 American Institute of Physics 1740
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Now, expanding the terms in powers of A and assuming

the weak statistical dependence :«).pproximation21 and
letting / (%, ¢, w)=Ly(x,?) + Ly(x,,w), one arrives at

(U(x, 1) =¥ 7x, ) + XL H(x, 1)
XK (x, X (X, ) : ¥ (x, 1) +O (V%) (2.4a)
and
(B, 1Y) = (T p(x, ) + ML (%, DK (X, XV (x, 8) ¥ 7(x, 1)
+ 202 Nk, YK (X, (Y (x, 8) :f 1(x, 1)
X[K (x, )V (%, 1) : ¥ (%, D]) +O(F);
continuing, we have
(U (x, ) =T p(x, O) + XL (%, ENE (X, EXE (X, £) : ¥ lx, 1)
+ 20K LN, YK (X, tKT (%, ) 1L (X, 1)
X[K(x, ) r(x, t) 1 ¥r(x, 1)])
+ 4L (x, N (X, X (%, 8) 2 L7 (%, 8)
x[K(x, ¥ r(x, t) : KL (%, )
XK(x, H)¥ r(x, ) 1 ¥ r(x, D
+{( LM, VK (x, 1L x, (X, 1)
XWr(x, £) 1 U p(x, 1)]: [ Hx, )
X[K(x, 0¥ (x, 1) : L (x, )N} +O(NY),

(2. 4b)

(2. 4c)
etc.

From the perturbation approach of the problem, not
much information can be gained and as we progress to
higher order terms the complexity increases enormous-
ly. Hence, it becomes near impossible to test the error
term (or the next higher order term that one is neglect-
ing). Also, if secularity is the problem, such an ap-
proach is useless. Hence, for most practical problems,
the equations generated are not computationally feasi-
ble nor can any information be gained concerning a
plausibility analysis. We also compounded the problem
by the averaging process assumed. All in all, one can
say that such an approach is highly impractical unless
A1 and Eq. (2.4a) is valid, i.e.,

(L7, 1) ¥ (x, )
= S(x, t) + MK (x, (¥ £(x, 1) : ¥ 1(x, 1)) + L7 (x, 1) Kby (x, 1),
(2.5)
then the perturbation approach is valid and useful.

Pursuing these same lines, Eq. (2.1) may be re-
written as

\Il(x; t’ (.0) =¥ (I)(xy t) - €L51 (x: t)Ll(x’ t’ w)‘l’(x’ t; w)
AL x, DK (X, ¥ (x, ¢, w) 1 ¥(x, 2, w)  (2.6)

where ¥V)(x, ?) is the solution of Ly(x, &)¥ ‘D (x, ) = S(x, t).
If we operate on the left-hand sides by ¥(x, {, w): and
average, one obtains

(¥(x, 1) 1 ¥(x, )
=(¥(x, 1) : ¥ P (x, §)
- &(¥(x, 1) : L5*(x, ) Ly(x, D) ¥(x, 1))

+ X¥(x, 1) : [Lil(x, DK (x, ) E(x, 1) : ¥(x, 1)]) +O (2.
(2.7
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Now multiplying Eq. (2.6) by L;(x, {, w) and averaging
and again assuming the weak statistical dependence
(WSD) approximation with the definition (L(x,?)) =0, one
finds '

(Ly(x, 1y¥(x, £))
~(Ly(x, ¥V (x, 1) - Ly (x, LT (X, 1)Ly (x, )H{¥(x, 1))
+ MLy (x, D) LM (x, DK (x, t)(E(x, £) : ¥(x, 1)
= — e(Ly(x, LG (%, Ly(x, H(¥(x, D). (2. 8)
Again returning to Eq. (2. 6) and averaging, we have
(E(x, 1) =¥ D(x, 8) - eLgl(x, )Ly (x, £)¥(x, )
+ ALl (%, DK (x, X (x, 1) : ¥(x, 1)), (2.9)

Neglecting terms of (J(A*) and () (€A), substituting Eqs.
(2.7) and (2. 8) into Eq. (2,11), and simplifying, gives
the result

[Lo(x, £) = XLy (x, )L (x, L, (x, 1) — MK (x, 1)¥ P (x, 1) 1]
X<\Il(x, t)) = S(x; t) (2. 10)
or

U (x, 1)) = [Lo(x, ) - €KLy (x, L5 (x, )Ly (%, 1)) - XK (x, ?)

X TP (x, 2) T (x, ) + S(x, )], (2.11)

where ®,,, is the initial condition of the homogeneous
part and is assumed to be deterministic, If it was a
stochastic function it must be included in the averaging
process. It is interesting to note that the term L(x, £)
={Ly(x, HLF(x, t)LE(x, £)) is the smoothing operator
derived by Keller, % and if the approximation to the
operator (/71 (x, ) is L(x, ) — €X(Ly(x, L5 (x, )L, (x, 1)),
then with a little rearranging in Eq. (2.11), one finds

QB(x, 1) =11 = ML(x, ) = XL, (x, )L (x, £) L (x, £))™

XK(x, ¥ D (x, 1) U p(x, 1)) (2.12)
and since X is small one finds
(T (x, 1) =41 + ML, — €XLy(x, £) L3 (%, )L, (x, 1))
XK (x, t)¥ D(x, 1) (¥ o(x, 1) (2.13)
or
[Lo(x, £) = €XLy(x, L5 (x, ) Ly(x, HKL (x, 1)
= S(x, 1) + NE(x, )T D (x, 1) : (L (x, ). (2.14)

In this result we have an inhomogeneous equation to
solve and the original nonlinear part is approximated by
inhomogeneous and averaged transport concentrations,

If one has the condition that ¥(x, ¢, w) : ¥ 4(x, {, w)
> )\\I’(x’ t9 w) : L-i(xs t’ w)K(x’ t7 w)‘l/(xr t: w) : \I’(x’ t; w)’ then
following along in the same manner as before

U(x,f,w): ¥(x,t,w)=Tax,t,0)¥Ex,1,w); (2.15)

then
[Lo(x, ) +€L,(x, f, w) = MK (x, )T px, £, w) ]V (x, {, w) = S(x, {)
(2.186)

and solving for ¥(x, ¢, w) gives
¥(x, 1, w)
={1 - )‘['LO(x; t) +€L1(x, t; w) ]-1K(x; t)\I’T(xy t’ O)) :}-1
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XU g(x, 1,0). (2.17)

Again, if A is small and the weak statistical dependence
approximation is valid, then

(¥(x, 1)
= <‘IIT(x) t» + )‘<L-1(x: t»K(x’ t)<\II T(x’ t) : ‘]'!T(xy t)) . (2- 18)

We see that equation (2. 18) is the same as (2. 4a). How-
ever, if A is not small, then equation (2, 17) becomes

¥(x,1,w)
=W (X, 1, w) + MLy(%, ) + €L (X, £, ) K(x, )V £(X, ?, w) :
x¥(x, £, w) + kZ) M[Ly(x, ) +€eLy(x, ¢, w)] !

=2
XK (x, ¥ (%, £, 0) : [V 1(x, 2, w) (2.19)
and averaging in the WSD approximations gives

QT (x, 1) = (¥ (X, 1)) + MLy(x, £) + €Ly (x, 1))

XK(X, t)(‘ll T(x; t) . \IlT xy t»
o T N L, DV (5, 0%, ) 20, D).
(2. 20)

3. THE RENORMALIZED PROJECTION OPERATOR

Returning to Eq. (1.1) (and for the sake of simplicity
incorporate the unimolecular term in L;), let us define
the solution ¥(x, f, w) in terms of an averaged part plus
a fluctuating component, Within the averaged solution a
projection operator (P(x, t)) is defined. This has the
effect of telescoping the mean value (¥(x, £)), and it will
approach the first smoothing solution when (P(x, )y < 1.

Now, let the solution of ¥(x, {, w) be

¥(x, 2, @) =1~ (Lo(x, £) = (Ly(x, L5 (x, )L, (x, ) P(x, £))]
X{(®(x, 1)) + 6¥(x, ¢, w). (3.1)
Substituting Eq. (3.1) into Eq. (1.1) and averaging,
gives the result
Lo(x, {1 = (Lo(x, 1) = (Ly(x, ) L3 (x, Ly (x, t)) K P(x, 1))
x{(®(x, ) =— (L(x, ) 6% (x, ) +S(x,?)

+LEE, 1 - (Lo(x, ) - Ly (x, DLF (%, 1)

X Ly(x, t)))(P(x, )]

x(@(x, W} :4[1 - (Lo(x, ) - {Ly(x, HHLF'(x, ?)

X Ly(x, ) P(x, tHKe (x, £}

+K(x, £){6¥(x, £) : 5%(x, 1)), (3.2)

By substracting Eq. (1.1) from Eq. (3. 2), one finally
obtains
Lo(x, 1)0¥(x, £, w) + Ly(x, ¢, w0)¥(x, {, w)
=K(x, ¥ (x, t, w) 1 ¥(x, 1, w) - (6¥(X, ) : ¥(x, t)}
+(Ly(x, 1)0%(x, 1)) - K(x, IR[1 ~ (Lo(x, £) - (Ly(x, ?)
XLgl(x, )Ly (x, K P(x, tHKS (x, 1)) :
X1 = (Lo(x, ) = (Ly(x, HL5Hx, Ly (x, D)™

x(P(x, t)) K (x, )} 3.3)
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or

5 (x, t, w) =B LG(x, HK(x, ) {6¥(x, ¢, w) : 6F(x, t, w)
- (6% (x, 2) : 6% (x, D)} - B1L;!(x, ©)
xX{L,(x, ¢, w)6%(x,t, w) - (L,(x,)5¥(x, t))}
- LG (x, )Ly (x, 1, w)[1 - (Ly(x, )
X{Ly(x, L5 (%, ) Ly (x, 1)) P(x, HK2 (x, 1)),

(3.4)
where
B=11-Ly(x, 1) - 2L (x, HK(x, )[1 ~ Lo(x, H)(L(x, ?)
xLgl(x, ) Ly(x, ) P(x, tHK® (x, 1)) :};

furthermore, if we define a(x,?)=L(x, )8 and G=G
—~(G), then

0¥ (x, £, w) = a(x, ) K(x, )5¥(x, t, w) : 5¥(x, t, w)
- a(x, )L (x, t, w)0¥(X, i, w) — a(x, )™
XLy(x, ¢, w)[1 = (Lo(x,8) = (L (x, HL;i(x, 1)
XLy(x, th) K P(x, tHK2 (x, 2, w).

I ax, )= Lyx, {1 - (Ly(x, £) - (L, (x, )L (x, )L, (x, )™

(P(x, 1))}, then one may solve Eq. (1.1) for (&(x, )} and
upon averaging, one arrives at

(®(x, ))=8y(x, 1) + a~1(x, 1)S(x, t) — a™L(x, 1L, (x, £)5F(x, 1))
+ai(x, DK (X, HL;I(x, Ha(x, (S (X, 1) : L7l(x, )
xa(x, (S (X, 1)) + a~t(x, DK (x, £){0%(x, ) : OF(x, 1)).
(8.7

The problem now resolves itself to finding the solution
of Eqs. (3.6) and (3. 7). However, let us define the
operator £, which when operating on 6¥(x, ¢, w) produces

Q,0%(x, £, wy= o (x, )L, (%, t, w)0¥(x, t, w)
= a-i(x) t)[Ll X, t: w)ﬁ‘ll(x’ t; w)

(3.5)

(3.6)

—(Ly(x, £)5%(x, )] (3.8)
and
Q¥ (x,t, w) = a M (x, D)L, (%, f, w)¥(x,t,w)
="l (x, H)[L,(x, ¢, w)¥(x, t, w)
—(Ly(x, ) ¥(x, D)). (3.9)

This operator €, has the property that {Q,f) =0, and
also (Q{,‘“‘j} =0, where f is a bounded random function.
Also, let us define Q,, which is

Q,0%(x, ¢, w) : 0¥ (x,, w)
= a"l(x, DK(x, £)0U(x, £, w) : 5¥(x, ¢, w)
=a"l(x, HK(x, i) {6%(x, t, w): 6¥(x, ¢, w)
— (6%(x, £) : 0¥ (x, )} (3.10)
This also has the property {2,6¥(x, t) : 8¥(x,)) =0, and
also (©7*¥f) =0 for all N. Consequently, the solutions
for Egs. (3.6) and (3.7) are
80 (x,t, w)=2,0U (x, £, w): O¥(X, ¢, w) - 2,0F (%, ¢, w)
- a~(x, )L (x, t, w)L3l(x, t)a(x, 1S (x, 1)
(3.11)
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and
(®(x, 1))
=&y(x, 1) + a"Hx, H)S(x, 1) + o™} (x, DK (x, )L (x, ) a(x, ?)
X(@(x, £)) : L5l(x, Ha(x, 1S (x, ) + a1 (x, XL, (X, ?)
xa™l(x, H)Ly(x, ) Lil(x, Ha(x, IXS(x, 1) <+ a(x, £)
x {K (x, )a(x, £)L,(x, )L (x, H) a(x, £){(D(x, 1)) :
xal(x, ) Ly(x, HLG(x, Do (x, 1K (x, D) +0 (R, Q).
(3.12)
Since Ly(x, ¥ (x, t)) = a(x, £X®(x, ), then
Lo(x, 1)(¥(x, 1)) =K(x, ))(R(x, ) : (¥(x, 1)) + S(x, £)
+(Ly(x, Dt (x, )L (x, )H{(¥(x, 8)
+K(x, H{a™l(x, )L (x, )(E(x, 1) : o l(x, t)
X Ly(x, tX¥(x, 1H) (3.13)
or
[Lo(x, ) — (Ly(x, Ha™(x, )L (x, HKE(x, 1))
=K(x, {)}(U(x, £)) : (¥(x, 1)) + S(x, {) + K(x, {)
x{al(x, HL(x, E(x, ) o™t (x, )L, (x, O, .
(3.14)

Recalling that a(x, £) = Ly(x, £){1 - 2L;'(x, HK(x, t)
X[1 = (Lo(x, ) = (Ly(x, L5 (x, ) Ly(x, 1)) K P(x, t))]
X((I) (x; t» :}’ or Slmply, a(xy t) = LO(X; t){l - 2L51(x’ t)
K(x, £{¥(x, 1)) :}, then Eq. (3.14) becomes

[Lo(x, 1) = (Ly(x, L3 (x, )Ly (x, tHK ¥ (x, £))
=K(x, ))(¥(x, 1)) :{¥(x, ) +S(x, £)

+K(x, t)(La‘(i:, HL(x, ¥ (x, 1) « Lyl (x, )L (x, 1)
X{¥(x, £)) + IZ)i K(x, 1)Ly(x, )L, (x, (¥ (x, £)
X(2L31(x, DK (x, )(¥(x, £):) L (x, )L, (x, 1))
+K(x, DL x, DK (x, H)(T(x, £) Y Ll (x, H)L(x, 1)
x(¥(x, ) : Lil(x, )L, (x, 1)) +K(x, t)((zL;,‘(x, DK(x, )
X (x, 1)) L5 (%, )Ly (x, KT (x, 2) 2 23 (L5 (x, 1)
xK(x, (¥ (x, D)L (x, )L (x, YK¥(x, £)). (3.15)

If one has the further limit that ||Ly(x, £)(¥(x, )| >
1K (x, )(¥(x, 1)y : (¥ (x, HIl, and if L,(x,7, w)
=dv(x, f,w) - V,, then

Lo(x, ¥ (x, ) — Vo | [ dx' dt'Gy(x, t|x’, #)(6v(x, t)dv(x’, ')
XV (U (x!, 1) =K(x, )(¥(x, ) : (¥(x, 1) +K(x,1)
x [ [ dx’' dt'Gy(x, t]|x’, ") Ve (B (', ¢'):
X[ [ dx"dt"Gyx’, ¢ |x", t")sv(x’, ')
X80(x", 1" ) Ve (H (X", £")) + S(X, B).
(3.16)

The validity of the equation occurs for the class of
projection operators which produce the inequality
I Lo(x, )(¥(x, tHI > K (x, D) ¥ (x, 1)) : (L (x, t)l, thus the
choice of operator (P(x, ¢)) need not necessarily be
unique, This is a necessary condition for the validity of
Eq. (3.16). In most problems of contaminants in which
the transport time is less than the time for chemical
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reactions, this inequality holds, and Eq. (3. 16) is
valid and in the case when [[Ly(x, £)(¥(x, Ml > [|K(x, )
x(¥(x, ) : (¥(x, H|l, then

Lo(x, t)U(x, )=V, [ [ dx'dt'Gy(x,t|x’, t")
x{bv(x, H)ov(x’, ') VLT (X!, ')
+K(x, )P (x, 1)) : (¥ (x, 1)) + S(x, t).
(3.17)

The coupling of the velocity correlation term to the
kinetic processes is applicable when there is not a great
inequality between the different correlation times, Still,
under a further limit when the kinetic processes are
not dominant, (¥(x,?)):{¥(x,?) can be replaced by
(O x, 1) (FD(x, £)), where the last term is the solu-
tion of the transport equation without kinetic processes.
The equation (3.17) then becomes an inhomogeneous
type and its validity is in the first Born approximation.
From this formalism the next terms in the series [the
last term in Eq. (3.16)] correspond to propagating the
mean value {(¥(x, #)) from points (x’,#’) and (x",¢") in
configuration space to (X, #) and (x’,¢’) in which there is
coupling due to velocity fluctuations in the domains
[x’,x"] and [#',¢"], and chemistry occurring at (x,?).

CONCLUSION

The renormalized projection operator technique can
produce a class of equations which are valid within the
choice of the operator (P(x, #)). Given the operator
(P(x,1), it is possible to derive a Kraichnan type equa-
tion for the nonlinear case as in the linear case. The
choice of the operator {P(x, )) depends on the physical
problem in question. However, from this approach, one
is able to arrive at better limits for the convergence of
the series which are manageable [such as [[Ly(x, {)
XCE(x, N> 1K (x, X¥(x, 2): (¥(x, £)Il] and, secondly,
the equations derived are solvable and have the added
feature of telescoping the normal renormalization and
hierarchical approaches.
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We prove that the solution of Nelson’s stochastic mechanics equation associated with any stationary
solution ¥ of the Schrodinger equation is the homogeneous Markov process of the heat equation with

Dirichlet boundary condition on the hypersurface y=0.

1. INTRODUCTION

In Ref. 1 Nelson introduced the concept of stochastic
mechanics and discussed its relations with quantum
mechanics. This opens the possibility of discussing
quantum mechanical questions in terms of Markov pro-
cesses as well as studying Markov processes by the
techniques used in quantum mechanics. Nelson’s sto-
chastic mechanics has received a new momentum by the
discussions of Guerra and Guerra and Ruggiero, 2 who
gave its generalization to infinitely many degrees of
freedom and showed its strong connection with Euclidean
quantum field theory.

We shall sketch Nelson’s argument for the case of a
system with n degrees of freedom and a conservative
force field — VvV, For simplicity we set all the masses
equal to one.

Starting with the Schrodinger equation
.0
iz Wlx, 1) = =5 89(x, 1) + V(x) Plx, 1), (1)

we write the solution in the form
W, t) = p* *x, t) expliS(x, )] 2)

where p=|{l2 Set v(x,1)=vS(x, t), where V is the gradi-
ent with respect to x. Then a Markov process £(¢) in R"
is completely described by taking p(x,#) to be the distri-
bution of £(¢) and v(x, ) its current velocity, i.e.,

v(£(t), 8) =3(D* +D") £(t), (3)

where D* and D~ are the mean forward and mean back-
wards derivatives:

D*F(&(t), 1) =lime™ E[F(&(t +e),¢ +9 - F(£(0), 1],

where E, is the conditional expectation with respect to

£(t).
If we define the displacement (drift) a(x,?) by
alx,t) =v(x,t) +3Vinp(x, ), (4)

then it follows from the theory of stochastic differential
equations that £(#) satisfies the stochastic differential
equation

dg(t) = o(E(8), By dt +dw(1), (5)
where w(¢) is the standard Brownian motion in R" given
by

E(dw () =0, Efdw(t)-dw1)=35,,dt.

It follows now from (1) that £(#) satisfies the Newton
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equation in the form that the mean acceleration is equal
to the force — VYV, i.e.,

3(D'D” +DD*) £(t) = = VV(£(2). (6)

On the other hand, if we assume that we have a
Markov process £(¢) which satisfies (5) and (6) for some
function o of £(#) and ¢, then we may define the function
p(x,t) as the distribution function for £(¢). We may
assume that the displacement a(x,?) is a gradient, so,
if we now define v(x,¢) by (4), v is also a gradient. This
gives us a real function S(x, ¢) by v =VS, where S is
determined up to a constant. Defining now {(x,¢) by (2)
Nelson proved that, under regularity conditions on the
displacement a(x,?), §(x,¢) satisfies the Schrodinger
equation (1). In the next section we shall see that in the
case where a(x,?) is not regular enough, then (5) and
(6) have more solutions than those coming from (1).
This was already noted by Nelson in Ref. 1.

Guerra and Ruggiero? have recently discussed the
extension of Nelson’s work to the case of the boson field.
They make the very interesting observation that the
corresponding Euclidean Markov field coincides with
the lowest energy generalized stochastic process
associated with classical field theory through the proce-
dure of Nelson’s stochastic mechanics. So that in this
sense the underlying four-dimensional manifold on which
the Markov field is defined can be considered as the
physical space—~time. This has lead us to the considera-
tions in the next section, where we shall discuss the
relation between Nelson’s stochastic mechanics and the
heat equation for a system with » degrees of freedom.

2. RELATIONS BETWEEN STOCHASTIC
MECHANICS AND THE HEAT EQUATION

The connection between the Schridinger equation (1)
and the corresponding heat equation

- :7 W, 1) = =2 89(x, 1) + V(x) (x, 1) (7

in the sense that the solutions of (7) are analytic in Ret
>0 and continuous for Ref = 0 and their values on the
imaginary axis are solutions of (1) has long been known
and utilized, and it is this relation that forms the basis
for Euclidean field theory. In this correspondence the
parameter ¢ in (7) has the interpretation of an imaginary
time. However, by the observation made by Guerra and
Ruggiero in Ref. 2 we are lead to the interpretation of
the parameter / in (7) as the real physical time for the

Copyright © 1974 American Institute of Physics 1745
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stationary process in stochastic mechanics correspond-
ing to the ground state for the Schrodinger equation (1).
Hence by Nelson’s equivalence between stochastic me-
chanics and quantum mechanics we are lead to the inter-
pretation of the parameter { in (7) as the real physical
time of quantum mechanics, at least for the ground
state. We shall see below that such an interpretation
also holds, with some modifications, for any stationary
solution of (1).

Let us now assume that the potential V(x) is such that
(1) admits a stationary solution, i.e., a solution of the
form §(x, #) =exp(— irt) ¢(x) with @(x) € L,(R"), so that

(—%A +V—)\)(p=0. (8)

Since this is a real equation ¢(x) can always be chosen
as a real function. In this case we have in the notations
of the previous section that p= ¢%(x) and S(x, #) = —a{.
We remark that we have permitted the square root in (2)
to be the positive or negative square root, depending on
whether ¢(x) is positive or negative, i.e., p*/%(x)=¢(x).
This is necessary in order to make S(x, ) a continuous
function of x. We now get that v(x,?)=vS=0. Hence the
current velocity (3) for the Markov process £(f) is zero.
The corresponding displacement (drift) is therefore
given by a(x,#)=%VInp. Let us assume that V(x) is a
smooth function so that by (8) ¢(x) is also a smooth
function. In this case a(x,?) is a smooth function outside
the set ¢(x)=0, where a(x,!?) is given by

a(x)=(1/0(x)] vo(x). 9

Hence, for a stationary solution of the Schrédinger equa-
tion, the current velocity satisfies v(x,?)=0 and the
displacement a(x) is equal to the osmotic velocity
$VInp, which is time independent and given in terms of
the eigenfunction ¢{x) by (9). If ¢(x) >0 for all x, then
a(x) will satisfy regularity conditions sufficient to
secure that the stochastic differential equation

de(t) = a(£@)) df +dw(t) (10)

has a solution and this solution is unique. See Refs. 3
and 1. So in this case we have a unique Markov process
" £(t) which is homogeneous in time with p(x) as the distri-

bution for £(¢) or, if we want, p(x)dx as the invariant
measure for the homogeneous process £(f). The situa-
tion when ¢(x) has zeros is more complex since this
leads, by (9), to singularities for the displacement o{x),
and hence the above mentioned existence and uniqueness
theorem does not apply. We shall, however, show that
even in this case there exist solutions of (10). The solu-
tion we construct is homogeneous with invariant distri-
bution p(x), which is related to @(x) by a(x)=3%VInp(x).

In fact let us look for solutions of
de(t) = al£(t)) dt +dw(t),

where £(/) is required to be a homogeneous Markov pro-
cess with given invariant distribution p(x) related to the
displacement a(x) by

(11)

a(x) =% V1np(x). (12)

Since (12) implies that the displacement a(x) is equal
to the osmotic velocity, we have that the current velocity
v(£(t), ) =3(D* + D7) £(t) must be equal to zero because
the displacement is a(£(¢), ) =D* £(¢) and the osmotic
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velocity is $VInp(x,t)=3(D* -D") £(t). Let £,(¢) be the
time reversed process. We then have that D™ £_(¢)

= -D*¢(t) and by the fact that the current velocity of £(t)
is zero, we get

D' g8 =D £(2), (13)

which then gives that also the reversed process satisfies
(11). It is therefore natural to seek solutions of (11)
which satisfy the condition that £, = £ (in law).

Since £(#) has an invariant distribution p(x) we may
define a semigroup P, in L,(pdx) by (P, f)(x) = E,[ f(£())]
for any f< L,(pdx), where E, is the conditional expecta-
tion with respect to £(0). The condition £, = £ implies
that P} =P,, where P} is the adjoint semigroup. It fol-
lows from the proof of Theorem 3, II, Chap. 2, Sec. 9
of Ref. 3 that if £(#) is a solution of (11) and f is a smooth
function which is zero in a neighborhood of the singulari-
ties of a(x), then the strong limit of = (1/¢)(P,f ~f)
exists as £/ — 0 and is given by

Af=-(1/2p)V - (pVy). (14)

Hence we get that the infinitesimal generator A of P,
is a closed extension of the operator ~(1/2p)Vv-.pV de-
fined on smooth functions which are zero near the zeros
of p. The condition £, = £ is equivalent to the condition
A=A* Hence we know that if there is a solution of (11)
with invariant distribution p and satisfying the condition
£ =£,, then the semigroup P, generated by the process
is of the form P, =exp{(—tA), where A is a self-adjoint
extension of —(1/2p)V - pV defined on smooth functions
which are zero near the zeros of p. There is an obvious
restriction for A, namely that we should have IIPi<1,
E, being a conditional expectation, so that A= 0,

We may now identify L,(pdx) with L,(R") by the identi-
fication f —— @f since ¢*=p. Then the operator —(1/
2p)V . pV is identified with

-3A+(V =) (15)

since ¢ satisfies the equation —3A¢ +(V =)@ =0.
Hence, in the L,(R") representation, P, =exp(-{A),
where A is a positive self-adjoint extension of (15) de-
fined on smooth functions which are zero near the zeros
of ¢(x).

In the case ) is the lowest eigenvalue A, we know that
¢(x) is always different from zero. Hence (15) is essen-
tially self-adjoint and for this special case we have then
simply that f(¢, x) = (P, f,)(x) is the solution of the heat
equation

I (16)
with initial condition A0, x) =f,(x). Hence in this case,
which is also the case in which we have existence and
uniqueness for (11), we get that the Markov process £(#)
of the stochastic mechanics is identical with the heat
equation process described by (16).

In the case where X is not the lowest eigenvalue, we
have that ¢(x) has zeros. In this case we take A to be
the Friedrichs extension, i.e., the minimal extension
that conserves positivity of —3A +(V —2) defined on
smooth functions which are zero near the zeros of ¢(x).
This is a self-adjoint operator A, > 0, and it is well
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known that it is —$A, +(V =2), where A, is the
Laplacian with Dirichlet boundary conditions on the
hypersurface ¢{(x)=0. It follows then immediately that
@(x) is in the domain of 4, and that A ,¢(x) =0 so that
p(x) is an invariant measure for the process £(¢) gener-
ated by the probability semigroup Py =exp(~f4,). Since
the eigenfunction belonging to the lowest eigenvalue 2,
for the eigenvalue problem (8) can be taken to be positive
everywhere, we have that an eigenfunction ¢ belonging
to any eigenvalue A >A, must take both positive and
negative values. Hence the hypersurface ¢(x)=0 divides
the space R" into at least two disjoint domains. Let A,,
a=1,..., I be the domains into which R" is divided by
the hypersurface ¢(x)=0. Since then A, is the direct
sum of &, operating in L,(A,), where A, is the
Laplacian with Dirichlet boundary conditions on the
boundary of the domain A,, we get that the process £{¢)
given by P} does not have a unique invariant measure.
We have namely that ¢ decomposes in a direct sum ¢
=7 a®a With @, =X, ¢ such that P¢,=¢,. That is to
say, all the distributions p, = 2 are invariant distribu-
tions for the process. In fact we see that the process
£(t) given by P{ never crosses the hyperplane ¢(x)=0,
and if we start it in any of the connected domains A, it
will always remain there. However, if we restrict it to
any of the domains A, it has a unique invariant measure
po- If we define flx,t)=(P{ f,)(x) we have

2 F= (=18, +(V =) (1

So also in the case where ¢ is an eigenfunction not be-
longing to the lowest eigenvalue A, we get that the
Markoff process £,(¢) in the stochastic mechanics is
identical with a heat equation process, namely the one
described by (17). We summarize the above results in
the following theorem.

Theorem 1: Let ¥(x, ) =exp(-ifa) ¢(x) be a stationary
solution of the Schrodinger equation (1), with a smooth
potential V(x) which permits stationary solutions. Then
the corresponding stochastic mechanics equation has a
solution £,(¢) which is a homogeneous Markoff process
that is invariant under time reversal and has p(x) = ¢(x)?
as invariant distribution. Moreover, the paths of £,(¢)
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are continuous and do not cross the hypersurface ¢(x)
=0, and the semigroup generated by £,(¢) is a heat equa-
tion semigroup with infinitesimal generator given by

-8, +(V =),

where A, is the Laplacian with Dirichlet boundary condi-
tions on the hypersurface ¢(x)=0.

Remark: It follows from this theorem that in the
stationary case for higher eigenvalues the stochastic
mechanics equation has several solutions, namely those
obtained by starting the process in one or some of the
domains given by the hypersurface ¢(x)=0. One may
ask the question whether the solution is unique in each
of the connected domains A, given by the hypersurface
¢(x)=0. We are able to prove this only in the one-
dimensional case. The proof goes by explicit examina-
tion of all self-adjoint extensions of (15) defined on all
smooth functions which are zero near the end points of
the interval A, determined by two consecutive zeros of
¢@(x). By using the fact that all such extensions are given
by self-adjoint boundary conditions, it suffices then to
show by a simple calculation that the Dirichlet boundary
condition is the only one which has ¢(x) as an
eigenfunction, recalling that V was assumed to be
smooth.
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Details of the group-theoretical method for the separation of tensor equations in a hHomogeneous
space are given. As illustrations, the vector and tensor harmonics in a SO(3)-homogeneous space are
constructed, with applications to the study of electromagnetic and gravitational perturbations in the

mixmaster universe.

. INTRODUCTION

In studying problems concerning electromagnetic and
gravitational radiation in a curved space, one usually
has to deal with vector and tensor wave equations of
some form. The general procedure for solving these
equations involves three main steps: First, one chooses
a coordinate system and reduces the covariant deriva-
tives in the tensor equations to ordinary derivatives,
thus introducing the Christoffel symbols and their de-
rivatives with dependence on explicit space—time vari-
ables. Second, one tries to construct complete sets of
orthonormal tensor harmonics and expands the tensor
field on the manifold in terms of these., When sub-
stituted into the tensor wave equations, the tensor
Fourier coefficients (the amplitude functions) obey a set
of partial differential equations. Lastly, one has to
ponder about the separability of the wave equations into
ordinary differential equations for each spatial variable.
If the space possesses a certain degree of symmetry and
if one can incorporate that into the tensor harmonics,
then the equations will probably be separable. But the
construction of the tensor harmonics with the inclusion
of arbitrary symmetry does not usually follow definite
rules, and sometimes that is just as difficult as the at-
tempt to achieve separability of the wave equations.

For spaces possessing a high degree of symmetry,
the methods for the separation of tensor equations have
been well thought out. Earlier works of Regge and
Wheeler! on the perturbations in the Schwarzschild
metric [of SO(3) symmetry on the 2-sphere $2] and of
Lifshitz and Khalatnikov? on the Friedmann universe
[of SO(4) symmetry on the 3-sphere $3] suggested one
way of constructing the tensor harmonics. They are de-
rivable by the action of invariant operators (e.g., the
7, L and V operators in Ref. 1) on the scalar harmonics
of the space. An alternative way, as exemplified by the
work of Mathews?® and Hu, ¢ constructs tensor harmonics
by coupling scalar functions with basis tensors belonging
to definite representations of the symmetry group. The
equivalence of these methods is only natural and was
proved in the case of the Schwarzschild metric by
Zerilli, ®* However, for spaces with lower symmetry,
especially when the space manifold and the group mani-
fold do not coincide (unlike the Schwarzschild and
Friedmann spaces), the above methods become hard to
apply because the invariant operators of the group do not
comply with the symmetry of the space and the tensor
basis is not derivable from simple representations.

In this paper, we shall focus our attention on the gen-
eral class of homogeneous spaces,® which are generated
by groups of motion that preserve the metric forms.
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For a homogeneous space possessing certain degrees of
symmetry as characterized by the underlying group,
one expects to find group theoretical methods to be of
fundamental importance to the solution of the above
problems. Can the basis harmonics be derived by some
simple group operation, and in the solution of tensor
wave equations, can one derive the equations governing
the amplitude functions of each normal mode with the
proper symmetry accounted for without going through
the expansion of tensor harmonics and the separation of
variables ?

This was the essence of the method proposed recently
by Hu and Regge.” It makes use of group symmetry
properties of homogeneous spaces to construct the ten-
sor harmonics and separate the tensor equations. By
this method, one can derive the field equations governing
the amplitude functions directly, without knowing the ex-
plicit forms of the harmonics. As an illustration the
method was applied to separate the perturbation equa-
tions in a closed, anisotropic universe (type IX, the
mixmaster universe). In this paper we shall elaborate
on the method and supply more applications. In Sec. IT
the formalism is presented in detail and the useful geo-
metric quantities in an SO(3)-homogeneous space are
presented. In Sec. III we construct the vector and tensor
harmonics from a solution of the wave equations. In Sec.
IV the method is applied to the study of electromagnetic
and gravitational waves in anisotropic homogeneous
universes. The method presented here can easily be
extended to study the separation of wave equations and
the construction of tensor harmonics in other types of
homogeneous spaces.

l. FORMALISM—GROUP THEORETICAL METHOD

In seeking a solution to a tensor wave equation, one
usually has to first expand the covariant derivatives into
ordinary derivatives and then look for an expansion of
the tensor field &, into basis harmonics and finally
ponder about the separability of the wave equation. This
procedure is rather involved and sometimes even in-
hibitive. However, for a homogeneous space, since
every point is equivalent to every other point by a group
translation, one can choose to perform all computations
at one specific point in space. The general form of the
equations are generated by simple group invariant opera-
tions on the manifold. The advantage over the traditional
approach described above are many. Firstly, as the
tensor equations are resolved at one point, the question
of separation of variables does not arise. The time de-
pendent differential equations for the amplitude functions
obtained at one point are just as general as at any other

Copyright © 1974 American Institute of Physics 1748
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point in space, Secondly, in a homogeneous space, the
set of tensor harmonics are composed of direct products
of the basis invariant forms operating on the representa-
tion function of the group. In this case, one does not
have to construct basis tensor harmonics as functions

of the whole space [like the spherical tensor harmonics
Y,.(6, ¢) in the Schwarzschild metric'-*:® and the hyper-
spherical tensor harmonics Y7, (x, 6, ¢) in the Robert-
son—Walker metric®:*), but, rather, one can evaluate
the product at one point and use the invariant operators
to generate the complete set. Any tensor field in a
homogeneous space can be expanded in terms of these
tensor harmonics. In fact, to derive differential equa-
tions for the amplitude functions, one does not even have
to know the tensor harmonics explicitly. All that enters
are the transformation properties of the amplitude func-
tions, which are carried by the tensor harmonics; and
the action of tensor harmonics under invariant operators
is simply derivable from the basic group structure. This
is where the merit of the group theoretical formalism
resides. Lastly, in the process of reducing the tensor
wave equation with covariant derivatives to ordinary
derivatives, one can avoid the complications in calcu-
lating the Christoffel symbols as spatial functions by
suitably choosing a convenient point in a simple co-
ordinate system and carry out all calculations there.
Since all geometric quantities involve no derivatives of
the metric tensor higher than the second order, one can
expand the metric tensor or any tensor quantities only up
to the second order in the coordinate variables—pro-
vided that a point like the origin in the Euclidean co-
ordinate is chosen. These considerations yield tremen-
dous simplifications in the computations. In the fol-
lowing, we shall take the SO(3)-homogeneous space as

a model and illustrate the above method of approach. In
the first part, we calculate the Christoffel symbols and
their derivatives by performing a power series expan-
sion of the general metric tensor. In the second part,

we explain the action of the invariant operators. The
tensor harmonics will be constructed in Sec. I
following this method.

A. Expansion of the metric in £4 coordinates
The metric of a homogeneous space is given by
2 — a
at :‘yabO'O'b (a)b:1’293), (1)

where ¥, is a constant symmetric tensor and the ¢” are
the invariant basis differential forms of the space. They
obey the relations

do* =1cs 0" A o, (2)

where C§, is the structure constant of the underlying
symmetry group. For SO(3)-homogeneous space
(Bianchi Type IX)® the C¢_ is equal to ¢ the total anti-

abe? _
symmetric tensor. The basis forms ¢? are expressible

in terms of coordinate differentials. One example is the
Euler angle parametrization (6, ¢, ¢) ®

ol=—sinydf + cosy sinbdo,
0% =cosypdbf+ siny sinfdo, (3)
o3=dyp+ cosbdo.

For simplicity of computation, the Cartesian coordinates
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%, (i=1—4) are preferred here. The invariant basis
forms ¢? (a=1—4) on the 3-sphere S® are given in terms
of the coordinate differentials dx' of the Euclidean space
E* by®

0= 2(— x,dx, — xdx, + X,dx, + x,dxX,),
0% = 2(xydx, — x,d%, = x,dx, + x,dx,),
0% =2(= x,dx, + x,dx, — x,dx, + x,dx,),
0% = 2(x,dx, + x,dx, + x,dx, + x,dX,).

By introducing the transformation matrices S and @,
the above relations can be reexpressed as

0¢=2S,,(x)dx* =2Q,,, x'dx’. (5)

(Throughout this paper, summation is extended over
repeated indices unless otherwise stated.) From the
orthogonality conditions of S, i.e.,

SusSs=0as  SusS

af“vi T akaj

=0, (6a)

one can easily deduce the following relations for €,

Q,,,Q

0ii Sir =050 4458, =0, (6b)

(In the above summations only, the indices a, b, j, 2 run
from 1 to 4.) Furthermore, from the explicit form of
0? it is clear that @ ;; is antisymmetric with respect to
the interchange of i and j for a=1, 2, 3.

The coordinate differentials of E* are expressible in
terms of ¢° by '

i__ 1 a
dx'=1S,,0°

(7a)

By introducing the invariant vectors e, on S? dual to the
basis forms 0¢, o0%e,)=35%, and obeying commutation
relations

[ea’eb]:—eabcec (8)

the coordinate derivatives (vector fields) of E* are given
by

e. {7b)

When expressed in terms of coordinate differentials
dx?, the spatial metric can be written as

di® =g, (¥)dxtax’,
where

811(%) =745 Sai(¥) Sy (%), V45 =47,y (9)

We now proceed to find an explicit expression for the
metric tensor g, ,(x) in terms of the spatial variables.
The calculation can be greatly simplified if we take into
consideration the observations mentioned above , i.e.:

(1) Since the space is homogeneous, one can choose
to evaluate all geometric field quantities at any arbitrary
point in space. In E* coordinates with restrictions on the
three sphere, a convenient point that renders greatest
simplicity is the pole (x,=x,=x,=0, x,=1).

(2) Since the curvature tensors are related to the se-
cond derivatives of the metric tensor, at the pole it
would suffice to retain terms up to the second order in
%, in the expansion of g,,(x).

Hence, from (4) and (9), writing x2=1-73_ %3, dx,
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=-¥3.,%,dx,, also setting x,=1, the square of the basic
forms are seen to be given by

O = (1 + 2% — 22 — x2)dx3 + x2dx2 + x2dxT — 2x,%,d%,d%,
+ 2(x, + x,%,)dx, dx, + 2(— %, + X, %5)dx, dxg,
Ho10?) = (x5, = 2, )dx2 + (% + %,2,)dxZ = x,%,dX5
+ (1 = 2x2)dx, dx, + (%, + 2x,%,)dx, dx,
+ (= x, + 2x,%,)dx,d%,.
From this, it is easy to relate the metric coefficients
g15(%) to v,y ‘ '
81 = V11 + 2% = x5 = x3) + 2 5 (= x5+ x,%,) + 2y 15(%, + x,%,)
+Yzz(x§) - 2723(x2x3) +7’33(x§), (10)
812 =Y 11X + %, %,) + 55 (= X3 + %, %,) = y3%, %5 + ¥15(1 ~ 243)
+Vpa(Fp + X, %) +y15(— %, + 2x,%,).
Other components are obtained from the above expres-
sions by cyclically permutating the indices 1, 2, 3. After
close observation of these formulas, we deduce the
following algebraic expression for the general metric in
S0O(3)-homogeneous spaces (Binachi Type IX) in E* co-

ordinates on the 3-sphere (expanded here to quadratic
order in x,):

i) =YisF ¥ 41 T EparY0X1 + (Y ) ¥ % (11)
+ 27klekim€ljrfcmxn + [(‘ymnxmxn) - (ymmxnxn)]éii'

For the contravariant metric g'/, an expansion to the
first order in x; will suffice for our purpose. This is
due to the fact that, in calculating the first derivatives
of the Christoffel symbols, we need to know the expan-
sion up to the first order in x; only. Thus,

1
g 1_ ,},11 + 2(,’/13’(2 - ,ylzxa)’ (12)
gl=y2 . ,ymx1 + ,yzsxz + (,yn - Yzz)xs,
or, in closed form, g"=y"+e¢,, v, +6€,,7"x,.
We give the explicit expressions for T'; ,, for i=1 be-

low; the other components are obtainable by cyclically
permutating the three indices (¢, &, 1);

Ty 11 =Y0% T ¥12% + Vis¥ss

Ty ,12 =13+ V12X + (Va3 = Y12)%2 = Yas¥ss

Ty 1= Y12 +¥13%1 = V2% + (V22 = Y1 )%,

Ty 20 = 225 + (Y11 + 2752 = 2755)%, = V12%z T 3¥15%55
Ty 55 = (Va3 = Va2) + Wag¥y = 2/15% — 2¥12%s

Ty 50 == 2055 + (Y11 = 200z + 2¥3e)%; + 3y 12X — V1a%se

(13)

With these formulas in hand we can easily calculate the
Christoffel symbols and their derivatives evaluated at
the pole. All the nonzero components are given as
follows (here, for completeness, we allow the metric
coefficients v, to be time-dependent, a dot denoting
derivative with respect to ?):

arY

'W'L = 3(Exs1 ¥ in FEnitYas)s
1

r?fzé.yw
b _aging, o 008 e ain Lo okm ) (14)
Loy=3Y" Y i ox, —E(Em'y ™ et €xisY ™ ui)s :
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Ty == 7" €1 Yin + €iy Yog)s

%:1 for i=j=k=1
ZY“(Y”_Ykk)+7”(7’kk‘7'u)+(7"k)’u">’”7kp)
forizjek=1(ptisth)
=Y v+ 205 = 20,,) + Ity - Yy,
for j=k+i=1
=2[7“(7H'7»)"'Yix(‘r’”‘?’“)+(Y”7;,—7"74,)]
fori=j=kzl
=M vm=vi) tv*y-v?y, fori=j=lzk  (15)
=7M(y“ - 7w+ 27'“)7k1 - 3’)’"751 +ay vt
fori=j+k=+l
=20y"y,, -y, v?) foritj=k=1
=y =27+ 27, + Yty = Byl + 20y,
for i#j=Fk#l
=dytty,, ~2yMy  ~2y%y,, for i=lzjzk
=YY= 2rg) = vl Y iy oy Ty,
forizj=lsk.

In Eq. (15), no summation is assumed over repeated in-
dices, and p#i+ k. For the diagonal metric, Yi=1364,
the above formulas simplify a great deal. In particular,
only three subcases for aI,/3x' remain nonzero. De-
fining v, =1} and «,=1,/1,, we reduce Eqs. (14) and (15)
for the diagonal case as follows:

o1y
T3 =Ky, a_th =€k = Ky,

ar}
a_le = €Ky = Ky),

Ye—YVi
Tt =¢
Ik {jk< ')/‘ )’

i _
Toy=xy84,

(16)

i _4

o, fori=j=k=1

_ (Yo=y Yo+ vi=7s)
Yo¥i

fori=j#k=1(p#i+k)

:£7L’+_'2)/Zj___.2_7’.fl for j=kzi=1.
i

B. Invariant operators and representation functions

Vector and tensor harmonics are generated by the
action of invariant operators of the space on scalar har-
monics, which are representation functions of the under-
lying symmetry group. For the SO(3)-homogeneous
space, the invariant vectors obey the commutation
relations (8). In terms of the Euler angle variables (3)
they are given by®*°

cosyp 9
sind d¢

.0 d
e, =-siny -5 + - cotfcosy 3’
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0 sin d
e, =cosy =5 + smlg TS — cotd siny — ad} (17)
2
e3 = .B—J‘

The invariant vectors e, are simply related to the angu-
lar momentum operators of the three-dimensional rota-
tion group in quantum mechanics by

L,=ie, (i=1,2,3),

where L, are the intrinsic angular momentum operators
of a rigid body. The Killing vectors £, that generate the
symmetry transformation of the space satisfy the com-
mutation relations:

(&, EJ=C2 E, (18)

and are related to the spatial angular momentum opera-
tors by ix =-iE, (x;=x,y, 2). The Casimir operator C

=33, €? is an invariant of the group just as the total
angular momentum operator L2=L3+L2+13=12+L2
+12% is a constant of motion in the quantum mechamcs
of rigid rotators.

The representation function f of the group satisfies the
differential equation L2f=\%f, which in Euler angle
variables is given by

az a 1 az 62
(392 +cotb 55+ Sinte <a¢ 2°°sea¢au) )

- xz] f=0. (19)
The solution is the well-known Wigner function'!
7 =D5u(0, ¢, ¥) = exp(iM ¢) d},,(6) exp(iKD) (20)

with eigenvalues A2 =J (J +1). They are simultaneous
eigenfunctions of 1.2, L,, L, characterized by the quan-
tum numbers J, K, M respectively:

12t =J+ D)%,
LaDKu = KDI{M:
L:D%M =M01'(’u-
In all spaces that have SO(3) symmetry, any scalar har-
monic function can be constructed from linear combina-
tions of the Wigner function. The general function pos-
sesses definite (J, M) states, but the K states will be

mixed. More discussions of the scalar harmonics can be
found in Ref. 10.

(21)

In terms of the E* coordinates, the invariant operators
are related to the spatial derivatives by (7b). At the
pole (x,=1, x,=x,=x,=0), S,;=-5,; and hence the dif-
ferential operators are given by
0
x,

=—2e,=2iL,.

0

(22a)

Repeated operations of ii yield expressions for the se-
cond differential operators

calll N (P, 35 A (22b)
ax,0x, |, 9x,0%, |, (A
From the simple relations
Lpx=t€Dgas L. Dx==€g10p (23)

sDx K gs
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where L, =L, +iL, and ¢, = [(J + K)(J - K + 1)]*/2, one de-
duces the followmg relations connecting the action of the
invariant operators on the representation functions:

03 =2iK/),

8=~ €gDp1 + €rlyer (24)
0y =i€x )y + 1Dy
9,0,= 0,9, =(~4L,1,-2iL.)p,
= (=€ p s Dyen+ Exar Epalpen)s
9,0, = 28,0, = (- 4L,L, - 2iL,)p,
=(1=2K)e /) ooy = (1 + 2K) 01 s (25)
9,0, =0,0,=(=4L,L, + 2iL,)p),
=41 = 2K)e g/) gy + 81 + 2K)ep 1 D s
0= - 4LiD,
=€ b1 Dxa = 2TT + 1) = K1)+ g€ piaD s
8= 412D,
== € gDz = 2T+ 1) = K21 — €4 1E g2l s (26)

3 == 4L30K 4K20K‘

Here 9, denotes the operation of the spatial derivative
9/0x, on the /), functions evaluated at the pole. These
formulas express the transformation properties of the
representation functions, and are used for the derivation
of recursive relations for the amplitude coefficients.

At this point, we have completed all the necessary
steps for the reduction of the covariant tensor equations.
We shall demonstrate in the next section how one con-
structs tensor harmonics by this method.

Hi. VECTOR AND TENSOR HARMONICS

Scalar, vector, and tensor harmonics in a homogen-
eous space can in general be expressed in terms of the
basis invariant forms of the space with the expansion
coefficients coupling to the representation function of the
particular underlying symmetry group. For SO(3)-ho-
mogeneous space, the general form of the scalar,
vector and tensor harmonics can be expressed as

J

‘I)JM(x) = K; ¢K0}y(x)) (27)
AJM(x)_ E AKU(,)DKu(x)’ (28)
hiy (%)= E hi 08 O(J)OKM(x) (29)

The general harmonics belong to definite angular mo-
mentum states (J,M). For each definite value of J, there
are (2J + 1) components of the amplitude coefficients
coupled to the representation function in the intrinsic
magnetic quantum number K. These harmonics satisfy
the respective scalar, vector, and tensor wave equations
(here i,j, m are space indices that run from 1 to 3)

<1>;,,,='"=0, (30)
A,,,im=0, (31)
Ryym™=0. (32)
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In the rest of our discussion, to keep the algebra with-
in reasonable reach, we shall limit our calculations to
the diagonal metric ¥,, =diag(¥,, ¥,, ¥;). The method re-
mains fully general. As a quick illustration of the group
theoretical method let us first deduce the scalar har-
monics of the space.

A. The scalar harmonics

The scalar harmonics are a set of scalar functions in
the space that satisfy the Laplace equation [the wave
equation (30)]:

@prpzg, me 10 (@ gl _a_) &=0. (33)

im \/—_g 9x; ox;

With the scalar functions expressed in the form (27), one
wants to find a set of recursive relations for the Fourier
coefficients ¢¥. The relations dictated by the Laplace
equation define the set of scalar harmonics. The usual
way is to express the Laplacian operator in coordinate
variables and seek for a separation of variables in the
equation. In the present approach we simply evaluate the
Laplacian at one point, say, the pole, and (33) becomes

Lot 12 12

Y2 Bxg 73 WS_
Then making use of (26), we obtain almost immediately
the recursion relations

(1/¥1 = 1/7 M€ o€ 4 92 +€xEy. 1058
- {2[J(J + 1) = K2](1 /7, + 1/v,) + 4K*/y } p¥=0.  (35)

(cf. Appendix A of Ref. 10). (In the above, the indices K
in ¢¥ have been shifted by the action of the invariant
operators. ) The set of coefficients ¢* satisfying the re-
lations (35) defines the scalar harmonics. If the expan-~
sion coefficients are made time-dependent in (30), the
derived equations from the four-dimensional wave equa-
tions will describe scalar waves in a homogeneous
universe. !

(34)

B. The vector harmonics

For the case of the vector harmonics, the amplitude
functions are expanded in terms of the basis invariant
forms with a coupling in the representation functions, as
in (28). The coefficients Ka" obey certain recursion re-
lations that arise from the solution of the vector wave
equation (31).!2 We first expand the covariant derivatives
in (31) into ordinary derivatives and the Christoffel
symbols

A m= mn{Ai,m.n
- (riknA

(Fim nA + r":mAk.n)
+ r k Al k) + r’:n r;m + r;n r:k)A 1}: 0.
(36)
Here, a comma denotes ordinary derivative. For a

diagonal metric y™*=(1/y,,)5,, we take the expressions
for I and T’ as given in (16), to reduce (36) to

im

ksm

. 2 24, 24,
(7"‘1) AA]_— Yo¥s «72 ) ax +(71 ) ax3>

2
+ -
[7’17’27’3 ! 2
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where A=(1/y,)3%/2x2 is the Laplace operator. The
other two equations are obtained by cyclically permuting
the indices 1,2, and 3. We then proceed to evaluate the
derivative terms. Rewrite

Ax)= ? AKX %) (38a)

and

)= Z)Zf”o(,, (x)=- E afs, (x), (38b)
where aX=-2A4¥ is defined in such a way that it is
equal to A" at the pole. It is also understood that we are
dealing with states of fixed (J, M) here, The terms that
involve derivatives of I" in (36) have been calculated be-
fore. As A,(x) are given by a product of space dependent
functions, the derivatives of them contain two terms,
i.e.,

2A; _ s~ (2AK(x) x(py 30
=7 (oL o et 51)

The derivatives of the /), functions can be related to the
action of the invariant operators and were given in (24)—
(26). The derivatives of A¥(x) can be obtained by ex-
panding (38b) into a series in powers of x;, in exactly
the same way as was done for the metric tensor. To the
second order, they are given by (at the pole):

(39)

From this, the first and second derivatives of Af(x) at
the pole can be read off easily, e.g.,

Af(xy=a¥f -€,, afx, + (afkx,)x,.

A K 02
_AL _ aéf, _A_Z_ — a{{, ete.
0x, 0x,0x,

Substituting the above relations for the derivative terms

in (37), we get

{c)t{"A-!~2<—J-—+L 1>ot.§‘c'32+2<——z‘-—+-—1-——1—)015‘63
Y2V3 Y2 Y3 YaY3 Y2 Y3

(40)
L,y N2 e e ~
+ [(72 + 73> s (V3 + (vp = 7s) ]]a{‘}OK(O)_o.

Now, all that remains is to write out by (24)—(26) the
action of the invariant operators on/),. The shifting of
indices on /), is then transferred to that on the amplitude
coefficients a¥, leaving a common spatial dependence in
[y But since /), is completely general, one arrives at
an equation relating the coefficients of neighboring K
states valid throughout all space:

1 1
— = —) (€pa€p1 @2+ €, € ,aFP)
(,y1 72) K+2 K+1™1 K=1"K*1
11 2 ., 5
+{=— +—=) - +(yy—
[(Yz 7’3> P Y+ (ra—7s)P]
1 1 4K*
2=+ = JJ+1—K"’——-—]a"
G +5n) e+ n-xe1- T | of

+4zK(—L+i-——1—-> +Zz(—1——+1 1)
Y2¥s Y2 Vs Y2¥s Y2 ¥s

X(€g aft + e ak)=0. (41)

For any J, there are (2J + 1) equations in (41). Adding
two other equations resulting from permuting the indices
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in Eq. (40), there are altogether 3(2J + 1) equations for
an equal number of unknowns af (i=1t0 3, K=-J to J).
These sets of recursion relations for the amplitude co-
efficients define the vector harmonics [in the form (28))
on the diagonal SO(3)~homogeneous space.

C. The tensor harmonics

The tensor harmonics are constructed in much the
same way as the vector harmonics. Here, the direct
product of 0%0® form a basis for any tensor field on the
space. The expansion coefficients i_sz are coupled to the
representation functions /), in the form (29). Rewrite

Ry (%)= KE RE(x) ) (%),
where .
k(%) = ZZ Figy 08 (¥)00;)(x)

=aZ; RE S, (%)S,,(x). (42)

We want to find a set of relations for the coefficients
rE from the wave equation (32). Let us first expand all
covariant derivatives in terms of ordinary derivatives
and the Christoffel symbols

hif;m;m:gmn[h’ij,m,n—(r?m.nhkj+ rjkm.nhki)
— (T hpint Tl m+ TR0

kjn n ' ki,m Ri,m
+ I‘J'kmhki.n-" I‘r’;n hii.k) + (r,iznrk'm + F,:" Fkli)hli
+ (r’jzn rk'm + rv:n rhlj)hil (43)

+ (Fiﬁnr;n + rfnr}m)hkl]'

In simplifying the wave equation one needs to evaluate
the first and second derivatives of 2f,(x) and ))%,. The
spatial derivatives of /), have been related to the action
of the invariant operators by (24)—(26). The derivatives
of kf(x) evaluated at the pole can either be obtained by
using the Killing condition or by performing a metric
expansion. The Killing equation (cf. Taub, Sec. 2, in
Ref. 8) £, ,+¢,.,=0 yields

onf; K~k K (k . 44
Fma :hikcjt+hijil’ (44)
where
oLk .
G.’:tE - ox’ (E 1)Ltl'

From the explicit forms of £, one finds that at the pole
Gj, ! 0= €ns1+

Alternatively, by making an expansion of h{‘j(x)

=hE 0%(x) 0%(x) in powers of x; in exactly the same way
as was done for the metric tensor, one can deduce the
derivatives just by reading off the coefficients of the
first and second order terms in (11) with Y. replaced by
h

ab*

With the expressions (16) for the Christoffel symbols
and their derivatives and the relations that govern the
derivatives of h{‘, at hand, we are now ready to simplify
Eq. (43). To give some idea of how one proceeds, let
us work out the (i, j=1, 1) component of the second de-
rivative term in (43) as an example: First, write out the
derivatives of the product ,,(x) =hE(x)/), (%), then,
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1 1 92hX 1 9hX )
- (M 9 = My K
7mh11.m,m—<y £y +27’m P Ot hi A Dy
To relate the derivatives of k%, to 1%, use the explicit
formulas (10), which gives, e.g.,

2k ohk
_llaxg =hE - hE, —ll—axz =2hrk, etc.
And, finally,
K _pK K _ 3K
Lhu mm:[ﬁfx+f‘&a_‘_;’11+fzz_ﬂxl
Ym 71 Y2 Vs

hE hE
+ 4<—Jn‘la2 - _na; + hflA]/) -
Y2 Y3
Proceeding in the same way for the other terms, after
some algebra, one arrives at the following equations for
the coefficients kf,:
. K hX
By '™ = {hﬁA + 4(21332 - Jaas)
) Y2 Vs

+hﬁ[(—i+l+i>— 4

3= 73)2]

?’1 Y2 Y Y172Y3
F ) ()
S + +y,—
(7’3 * Y2 ¥Y3Y2 O+ vs) Ya
hK
+ (7’1 bl % +73)2(;n>]EDK(O) =0’ (45)
3

. hEK hk (hK -h")

3

o)A ]
Yi Y2 V3 Y2¥s  Ys¥Vi  Y1V2
X N(0)=0.

By means of Eqs. (24)—(26), one obtains a set of re-
cursion relations relating the coefficients ha’fb of neigh-
boring K components. These relations define the tensor
harmonics in the diagonal SO(3)-homogeneous space.

IV. APPLICATIONS: ELECTROMAGNETIC AND
GRAVITATIONAL PERTURBATIONS IN THE
MIXMASTER UNIVERSE

The group theoretical method introduced here can be
used to study any kind of tensor equations in a spatially
homogeneous universe. One does not have to calculate
the explicit forms of the tensor harmonics as defined by
the set of recursion relations on the amplitude coef-
ficients, but can proceed directly in the same way as
was illustrated in the previous section. Thus, by
allowing the spatial metric coefficients to be time-
dependent,

AR =7 ,(t)oa®, (46)

the metric ds®= - di? + d(? describes a spatially homo-
geneous universe. The particular type is characterized
by the classification of the structure constants.® For
SO(3) symmetry, the space with diagonal metric is
called the mixmaster universe.!® To describe elec-
tromagnetic perturbations in an empty mixmaster uni-
verse, one seeks a solution to the time-dependent wave
equation™?

Au;a:a+RLov)AV:0’ (47)
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where R?, the Ricci tensor, is equal to zero for an
empty background. The A, (x,t) are the four-dimensional
vector potentials related to the electromagnetic fields
F,,by F, =A, -A,., (Greek indices run from 0 fo 3).
Allowing time dependence for the vector functions

aX(t) (a=1, 2, 3) in (38) and assuming

AdM(x, 1) = ; af(t) Dyulx), (48)

one derives the differential equations for the spatial
components by an extension of (41).

The additional terms in the y =1 equation (40) read as
follows:

{— &f+('{1_ Ky = K3)(.If

+ [Ry + 1y (B, + Ky + k) ]af = 2k, 0%0,}),(0). (49a)
The p =0 equation is new:
[- &+ afa ~ (2, /v, )akd,, = (3 K)o
+ (Cakm)ag]n (0) =0. (49b)

In addition, the vector potentials satisfy the divergence
conditions

Au;u =0 =guV(Au'u - F:vA).)’
which is resolved to

[@f + (3, k) = (ak /y,)0,]),(0)=0. (50)

These equations are further reduced by (24)—(26) to a
set of coupled differential equations for the potential
functions oX(#). Equation (50) acts as a constraint equa-
tion on the variables o, and &  and the dynamic equa-
tions (49) describe the evolution of electromagnetic
perturbations in the mixmaster universe.

As another example, the equations describing small
first order tensor perturbations in an empty background
metric are given by’

6R,, =3k ia_p Bl LR o

uv;a, no ;v Vo a:u;v)ZO' (51)
For the diagonal mixmaster universe, this problem has
been studied by Hu and Regge.” There, Eqs. (51) are
first expanded in terms of the ordinary derivatives and

the Christoffel symbols

ZéRuv:gaB{(huv.a.B_h -k

uow,B va.u.B)

+2I°, b +T*

uv.8 pa uvhpa:B)

+ r‘:!B (huﬂ-v + hVD-u - huvm) + rftB(hna.v + hva.p - hnv.a)

- 2(1-‘748 rgv+ FZBPZD)hoa - ZF‘&BI‘U h

uv'vop

+ vk

(-1 X%

+h’ua.n—hpu.a)}+h’u,v—rp h

uvlto (52)
where 2= hS is the trace of the perturbation. Then, ex-
pressing k,,(x, t) in terms of the tensor harmonics as in
(42), one makes use of Eqs. (11), (16), and (24)—(26) to
simplify (52). By following the same procedure as illu-
strated in Sec. III, one can derive the perturbation
equations with relative ease. The final equations were
given in Ref. 7 and shall not be listed here. There, the

synchronous conditions .
hoo=ho; =0 (53)

were imposed. For each K component, one arrives at
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four constraint equations 6G,,=56R,; =0 (first order dif-
ferential in time) and six dynamic equations 6R;; =0
(second order) for 12 unknown functions %,; and &,
which are all coupled. Since there are (2J+ 1) compo-
nents for each fixed J, one needs to specify 8(2J + 1)
variables as initial conditions.

Parallel to the linearized theory, there is an equiva-
lent way to describe tensor perturbations in a curved
background. In terms of a new quantity

hi=h,, - thg,, (54)
and by specializing to the Lorentz gauge condition

h,ie=0, (55)
Eq. (51) can be rewritten as

By ™ + 2RO, B2 =0, (56)

This equation describes the propagation of gravitational
waves in a curved background. R{?,, are the background
Riemann tensor components. In addition, the trace
condition!®

B=0 (57)

can also be imposed globally along with (55).

It is a simple extension of our treatment in Sec. III
on tensor harmonics to derive the tensor wave equation
(56) (we shall drop the bar over Ew here and simply call
them % ). The components ky, h,y;, and k,, are ex-
panded as scalar, vector, and tensor harmonics, as
in (27), (28), and (29) respectively. Condition (55) then
reads

hua;a =gaa(hua.8 - ru.yﬂhav - FraB hur) =0’

. X
(u=0): [— hE + %h{fmam— (Km %ﬂm—)
m

m

; (; /cm) h;g] D0 =0, (58a)
(k=1): [— hE + ;tl- im0 + 2(:—2 - %)hé‘a
_(mz Km) hg;] Del0)=0. (58b)

The other ten equations (56) are obtained following the
method introduced above. [The Riemann tensor coef-
ficients R ,, in (56) can be found in, e.g., Appendix A
of Ref. 19.“] Notice that under the Lorentz gauge one can
no longer impose the synchronous condition (53) globally.
Since the procedure is now quite familiar, we shall not

proceed with the details.

The group theoretical method introduced here for the
study of tensor equations in the mixmaster universe is
equally applicable for homogeneous spaces of all sym-
metry types. The procedure can be carried over in
exactly the same manner as outlined in Sec. III.
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A general class of static cylindrically symmetric solutions of the Einstein-Maxwell equations coupled
with a zero-rest-mass scalar field is obtained under the assumption —r ?g,, =8008 p¢8- - Lhese
solutions reduce to Marder’s well-known exterior solution in the absence of electromagnetic and

scalar fields.

1. INTRODUCTION

In the literature there are some interesting static
solutions of the Einstein—Maxwell equations. In a
space—~time region symmetric under rotations about a
spatial axis as well as under translations about the
same axis, these solutions correspond to three types
of fields: azimuthal fields (Mukherji'), radial fields
(Mukherji', Bonnor?), and longitudinal fields (Bonnor?,
Melvin®, Ghosh and Sengupta?). Mukherji obtained a
class of solutions of the field equations corresponding
to an infinite straight wire carrying current, using
pseudocylindrical coordinates. Bonnor® observed that
with this solution for the azimuthal electromagnetic field
it is difficult to interpret the constants in the way
Mukherji interpreted them, as parameters representing
mass, current, and radius. Indeed, one can eliminate
the constant representing mass in his solution by a suit-
able coordinate transformation, Further, for vanishing
electromagnetic field his solution goes over to Marder’sS
solution only for a particular value of the parameter
associated with the gravitational mass in Marder’s
solution,

In the case of the already-known solutions of the field
equation corresponding to an infinite line-charge, Som”
showed that if there are no singularities in the field,
then one must allow negative values of RS in the source
region; negative values of R would then require 73— 7/2
<0, which demands a very unusual property of matter.
Thus one is forced to infer that no solution seems to
exist for a line-charge with positive mass.

Similar is the situation with the solution correspond-
ing to longitudinal fields. The only solution known so
far which does not give rise to this situation is that of
Melvin. However, Melvin’s solution corresponds to a
magnetic universe free of any source.

In this paper we have studied all these fields coupled
with zero-rest mass scalar fields. Though inclusion of
a scalar field does not remove the previously mentioned
difficulties, some interesting results are obtained.
Furthermore, we have obtained a new class of solutions
of the field equations corresponding to an infinite wire
carrying current. For vanishing electromagnetic and
scalar fields all our solutions go over immediately to
Marder’s solution.

2. STATIC FIELDS
A. Basic equations

The field equations of space—time containing elec-
tromagnetic fields and a zero-rest mass scalar field,
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but no matter are

Ry, -8, R/2=-k(E,, +5,,), (2.1)
with

E,, =&(F, " Fo, = 8,,Fs"Fs*/4) (2.2)
and

S,,=S5,,8,,-8,,87°S,,5,/2, 2.3)

where F,, is the skew-symmetric electromagnetic field
tensor which satisfies Maxwell’s equations for empty
space,

F[uv: a]=0 (2-4)

and

F, =0, (2.5)

the semicolon denoting covariant differentiation; and S
is the zero-rest mass scalar field, which satisfies

Sik=0. (2.6)

B. Surviving components of electromagnetic fields

We shall first obtain the surviving components of the
electromagnetic fields in space—time region where the
metric tensor g,,, the Ricci tensor R,,,, and the tensor
S,, are all diagonal; then from Eq. (2.1) one has
E,, diagonal. The vanishing of Ey and E,; implies,
respectively,

g22F20F21+g33F30F31=0 2.7

and

g0F Fog+ g F,F =0, (2.8)

One then has

FooFy (FyoFy) "t <0 except when Fy F, = Fo F,; =0 (2.9)

and

FyFyo(F o F )1 >0 except when F,F,,=F,F ,=0.
(2.10)

Equations (2.7) and (2.8) are then only compatible when
either the pair of components (F,,, F,,) or the pair of
components (F,,, F,,) vanishes. Similar considerations
about the vanishing of E,, and E,, show that at least one
of the two pairs of components (Fy,, F,,) and (Fy,, F,,)
must vanish; and the vanishing of E , and E, imply
vanishing of at least one of the two pairs (F,,, F,,) and
(Fys, Fy,). Consequently, of these three pairs of com-
ponents (F,,, F,;), (Fy;, Fs1), and (Fy4, Fy,), always only
one pair of components survives, for nonvanishing elec-
tromagnetic fields.

Copyright © 1974 American Institute of Physics 1756
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C. Field equations in static metrics with cylindrical
symmetry

The line element for a static system with cylindrical
symmetry is

ds®=e®" di? — e dr? — r2e®dP? — e*7dz2?, (2.11)

with 1, A, B, and y functions of » only. It is known

(Ref. 8, Chap. 8) that for any static cylindrically sym-
metric system, the metric components can be described
by only three functions of the radial coordinate. Usually
one encounters in the literature g, =g, . However, one
finds that with this assumption no solution exists corre~
sponding to an infinite straight wire carrying a steady
current. Another possibility is »%g, = &s4> cONsidered
by Mukherji,! but one has difficulties in interpreting the
constants (Bonnor®). So we try the relation °g, =

= 8008468z that is
r=n+B+y. (2.12)

Then the surviving components of Ricci tensor are (a
subscript 1 means d/dr)

R%= - exp[-2(n+ B+ N, +n./7), (2.13)
Rli=- exp[— 2(n+B+ 7)][1111 +8try + (Bl ==y

7 =2(n,8, + 0,7, + B8], (2.14)

R%=-exp[-2(n+B+¥)(B, +B/7), (2.15)
and

R}=—exp[-2(n+B8+)]ly, +7/7). (2.16)

Since the electromagnetic field F,, depends only on 7,
we have from (2.4)

Foz:€¢; (2.17)

Fos=C s (2.18)
and

Fzs:CB,u (2.19)

where &, &,, and B, are constants; and from (2.5) one
has

Fp=¢,r7e”, (2.20)

F,=cf,re®, (2.21)
and

Fa=cB,re™, (2.22)

where &, B,, and 3, are constants.

From the invariant F* F¥,, when only one component
of Fy,,, survives, we see that in the weak field approxi-
mation we may associate the constants £, A,, and 3,
with uniform charge per unit length along the z axis,
steady current along the z axis, and steady solenoidal
current around the z axis, respectively; and we may as-
sociate B,, £,, and ¢, with the corresponding magnetic
analogues.

Also the massless scalar field depends only on », so
from (2.6)

S,=5r"

where § is a constant.

(2.23)

If we now define the constants
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C,=re(E2+ R2)/2, 2.29)

Co =keg(E3 + B2/ 2, (2.25)
and

C,= ke, (E2+ c2BR2)/2, (2.26)

then the simplest form of the Einstein equations is

0y, +rn, ={C, e", C,e¥, C r*e*%, (2.27)
7B, + 7B, ={—C,e”’-, C.e, ~C r?e*}, (2.28)
Pyy+ry,={-C,e™, -C,e*"C, r2e?8}, (2.29)
and
2y 0 ) B /7)) =k 52

+H{=C,e™, C, &%, C, 7%}, (2.30)

where in each bracket {} only one of the terms is to be
considered, since in each problem only one of the con-
stants C,, C,, C, can be different from zero.

3. SOLUTIONS OF THE FIELD EQUATIONS

In all three problems (radial, azimuthal, and longi-
tudinal) the method for obtaining the solution is identi-
cal; we use the first three equations for obtaining the
expressions of 7, B, and ¥ [X is then got from (2.12)],
with a total of six constants of integration; then the last
equation (2.30) gives a relation which reduces these
six constants to five. After that, one can easily reduce
these five constants to only three essential ones, by
suitable coordinate transformations. We have now three
cases:

A. Azimuthal fields
In this case C,=(C,=0; then (2.29) gives
y==log[(/aP +C ,(2b)2(r/a)*]=-1l0gA, (3.1)

with a and b constants of integration; the sum of (2.27)
and (2.29) gives

n=-y+hlog(r/d), 3.2)

with & and d constants of integration; and the sum of
(2.28) and (2.29) gives

B==-y+ploglr/f), 3.3)

with p and f constants of integration; finally, substitution
of (3.1) to (3.3) into (2.30) gives

ph—b% -k §2/2=0. (3.4)
One thus obtains
og= (/™ B2, (3.5)
gy == (/AP (r/f)5ex 5P 122, (3.6)
= — 1 7/ f)P7ex 2 1DIng2. (3.7
and
Zo=- B (3.8)
With a suitable coordinate transformation, one obtains
Boo =7 /7,20, (3.9)
B = 3 o/ ry o e 2, 6.10)
Ban= =12 F (v 7y) B m2be s (3.11)
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and

Zaz=— Fo 0/ 7) 7, (3.12)
where

7o=ala/ A (af f)o% 12 (3.13)
and

Fo=[1+C,20)20r/7,)?P. (3.14)

Mukherji (Ref. 1, Sec. 2) gives a special case of this
solution, for vanishing scalar field.

B. Radial fields

Following similar steps, one obtains for the radial
case

(Co=C,=0)

8oo = F, " r/7p)20), (3.15)

Gu= = 7, (#/vo) oo oo 57, (3.16)

Goa = = 127, (1] 7y 22v 2 e s, (3.17)
and

g33=— F,(r/r)™, (3.18)
where )

F,={1 - C, 20+ BI20/r,)2 0w}, (3.19)

‘Particular cases of this solution are given by Mukherji
(Ref. 1, Sec. 3) and Bonnor (Ref. 2, Sec. 2.b).

C. Longitudinal fields

For the longitudinal case (C,=(,=0), one obtains

fao= 3.0/, @.20
g == F, (r/r,) 2t 0% 14202 /hew ‘2”’, (3.21)
Z=-77F" (,r/,ro)-2+2b+2b2/h+x3‘2/h , (3.22)
and
g= = T/ 7)™, (3.23)
where
Fo={1+C, =20 +m) + 20+ h+xS?/R]?
% (T/,’,o)-z(b+h)-r2(b+h72/h+x s z/n} 2, (3.24)

Bonnor (Ref. 2, Sec. 2.a, and Ref. 5, Sec. 3) and
Ghosh and Sengupta? give special cases of this solution.

In the absence of electromagnetic fields (7, =7,= 7,
=1), solutions for radial, azimuthal, and longitudinal
problems become identical.

We next impose the condition that our coordinates be
Weyl canonical ones, in the absence of electromagnetic
fields; this means g,,g,,= -7, and g, and g,, become
identical as a consequence of (2.12). This imposition
relates the three constants b, s, § by

h=(b+h?-k52/2=0. (3.25)
If we further relabel the combination b + &,
b+h=2m, (3.26)

then we get, in the absence of electromagnetic fields,
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Loo= /1), (3.27)

B =8s3 = = (v/7g) 4mit-zmisn 52 (3.28)
and

8oa= =12/ 7p) ™. (3.29)

With electromagnetic fields the components of the
metric are (3.27)—(3.29) multiplied by the correspond-
ing factors 7 or their inverses 7~!, which now take the
form

F.=0=C (am)2r/r,)m P, (3.30)
Fo=[1+C = 4m+8m?+ 52
x (v ro)ameamPen s° (3.31)
and
F.=[1+C, 722 - 4m)2(r/ 7). (3.32)

We have thus obtained a set of solutions which go over
to the solution given by Marder® in the absence of elec-
tromagnetic and massless scalar fields. In the absence
of a scalar field, making parameter m vanish in the
longitudinal solution gives the electromagnetic geon of
Melvin. ? It should be noticed that our radial and longi-
tudinal solutions are expressed in Weyl canonical co-
ordinates, while our azimuthal solution is not.

4. DISCUSSION OF THE RESULTS

In Sec. 2B we showed that static cylindrically sym-
metric systems may contain exclusively radial, or
azimuthal or longitudinal electromagnetic field, not
combinations of these fields. Choice of coordinates
r"’gﬂz — 80084 o8 PTOVEd to give equations easier to
solve than others more frequently used in literature,
such as g, =g,, or g,,=72g,,; our choice of coordinates
and an appropriate labeling of constant of integration
allowed solutions of the three independent systems to
become identical in the absence of electromagnetic
fields; and further these tend to Marder’s solution in the.
case of a vanishing massless scalar field, when one of
the two constants b and h is fixed by the condition (3.25).

It is evident from Eqs. (3.30) to (3.32) that one cannot
have m =0 for a radial field and m =1/2 for a longitud-
inal field, independently of the scalar field. With an
azimuthal field the situation is different: only in the ab-
sence of scalar field does the solution corresponding to
azimuthal field not allow both w1 =0 and m=1/2. For
vanishing electromagnetic field the expression for
Kretschman scalar takes the form

=[64m?(1 - 2m)*(1 - 2m + 4m?)
—16m( - 2m)(L - 4m + 8m?) ¢ §?
+ (3~ 8m +16m?) k2 §4] 7,

X (y/,ro)-4+8m'16m2'25< ke 2; (4. 1)

RU-VDO‘R

wvoo

when § #0 this is always positive and tends to zero at
infinity, However, when § =0 it tends to zero every-
where as m tends to either the value zero or to one-half.
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Janis et al.® prescribed a method of obtaining some
generalized electromagnetic fields from the vacuum
field solutions irrespective of any symmetry, but their
prescriptions do not admit combination of electric and
magnetic fields. However, our solutions allow combi-
nations of electric and magnetic fields.
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Gauge theories and Galilean symmetry
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Relations between a nonrelativistic local phase symmetry and the Galilean structure of the operator
algebra are studied. The latter is derived from a few simple assumptions. For interacting systems, the
assumption of phase independent localization leads to a unique Hamiltonian. Superselection rules for

mass, time, and charge appear in intimate interrelationships.

1. INTRODUCTION

Ever since Weyl! so forcefully pointed out the role of
gauge transformations in quantum theory, this topic held
a fascination for many physicists, The idea, originally
formulated for electromagnetic interactions, was put
into a new perspective {local phase invariance) and ex-
tended to non-Abelian symmetries by Yang and Mills and
by Utiyama.? In recent years, combining gauge invari-
ance with spontaneous symmetry breaking, impressive
progress was made toward the understanding and the uni-
fying of elementary particle interactions, 3

In his penetrating analyses of symmetry principles, it
was repeatedly pointed out by Wigner* that gauge sym-
metry is radically different from other, classical (or
geometrical) symmetries. Gauge transformations do not
affect observations and do not correlate events. They
appear to apply to specific interactions and are formu-
lated in terms of the laws of nature. For this reason,
Wigner uses the term “dynamical invariance” when
speaking of gauge symmetry.

The dynamical nature of gauge invariances is further
illustrated if we consider the (nonrelativistic and non-
quantum mechanical) Lagrangian formalism. The
Lagrangian of a classical point particle {with unit
charge) in interaction with an electromagnetic field is

L=1iM§ -V +gA. (1.1)

This is obviously not invariant under an electromagnetic
gauge transformation

(1.2)

However, the corresponding action and the equation of
motion resulting from (1.1), i.e.,

Ve V+wo, Ao A -grado.

Mg = ~gradV —A +{xcurlA, (1.3)
are gauge invariant.

The situation is rather different in quantum mechan-
ics. The Lagrangian density

[ =ip*(3, +iV)y - (1/2M)(2, +iA)p*(o, ~iA)p  (1.4)
leads to the Schriédinger equation
is Y+ (1/2M)(3, - iA N3, —iA )y - V=0, (1.5)

Now neither (1.4) nor (1.5) is invariant under (1.2},
This is an untenable situation because, unlike the field
strengths, the potentials are not measurable and deter-
mine the former only up to the gauge transformation
(1.2). We therefore are led to postulate that every gauge
transformation (1.2) of the fields must be accompanied
by a gauge transformation

(,/),, e‘iw(x,t)d) (1.6)
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of the matter wavefunction. Then both the Lagrangian
{1.4) and the dynamical equation (1.5) are invariant. In
fact, the latter describes correctly the nonrelativistic
quantum theoretical behavior of a (spinless) particle in
an external electromagnetic field.

At this point we make an important stipulation: Gali~
lean invariance of nonrelativistic physics is, very much
like gauge invariance, essentially a dynamical invari-
ance. This may sound surprising, because, after all,
proper Galilei transformations are inertial transforma-
tions and, thus, they affect observations. To bring out
our point more clearly, let us take the Lagrangian of a
free point particle,

= MY, 1.7

Whereas L is invariant only under Euclidean transforma-
tions and time displacements, the corresponding action
and the equation of motion,

a=0, (1.8)

are also invariant with respect to Galilei transforma-
tions. In fact, as Houtappel, van Dam, and Wigner®
pointed out, even if we add to (1.7) a velocity indepen-
dent potential V (which is Euclidean and time ~displace-
ment invariant), the resulting equation of motion will be
Galilei invariant, even though the Lagrangian is not.
Thus, Galilean invariance of the dynamics emerges as
a consequence of a-smaller kinetic invariance provided
the forces are of a special kind.® This situation is in

‘complete analogy with the emergence of the gauge in-

variant Eq. {1.3) from the nongauge invariant (1.1),
where the invariance arose again from the special form
of the interaction. In contrast, we observe that in rela-
tivistic mechanics the Lagrangian L= $mu,*, which
leads to the Lorentz invariant equation of motion d(muv)/'
d7 =0, is already invariant under Lorentz transforma-
tions. Thug, inertial transformations in relativity are
completely kinematical in nature, in contrast to nonrela-
tivistic physics.

Let us now consider again nonrelativistic quantum
mechanics, For a free particle we set

L =iy - (1/2M)2,3*2,, 1.9)
and obtain the Schrédinger equation
iz +(1/2M)9,8,9=0. (1.10)

If we do not iransform ¢ while performing a Galilei
transformation on the coordinates, neither (1.9) nor
(1.10) is invariant, To achieve invariance, we have to
postulate that every Galilei transformation must be ac~
companied by a transformation

Copyright © 1974 American institute of Physics 1760
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P— e Y with f=1M0v*t + Mvx, (1.11)

of the wavefunction.” Comparing these observations with
the paragraph preceding Eq. (1.6), we again see the
close resemblance between the character of gauge and
Galilei symmetry.

A much deeper relation between gauge and Galilei in~
variance is observed if one considers the introduction
of an external force. 1t is easily seen that, if one adds
a term V{(x)y*¢ to (1.9) [with V(x) not constant], then
Galilean invariance of the resulting Schrondinger equa-
tion cannot be achieved, not even if V is velocity inde-
pendent, space- and time-translation invariant.® How-
ever, if one couples the matter field § to an external
electromagnetic field, as given by (1.4), then Galilei in-
variance of the corresponding Schrédinger equation (1.5)
can be restored by taking advantage of the available
gauge freedom, i.e., by performing also a suitable
gauge transformation® on V, A (and ). Such Galilean in-
variant wave equations of particles (with arbitrary spin)
in an external electromagnetic field have been studied by
Lévy-Leblond. °

The surprising relation between these two seemingly
disparate symmetries (which has no counterpart in stan-
dard relativistic quantum theory) was first noticed and
studied, from a more general viewpoint, by Jauch.! He
defined a kinematical symmetry transformation as a
permutation of the set of all observables of a system
which can be globally implemented by a unitary operator
on the Hilbert space.'? He then defined a physical sys-
tem to be Galilei invariant if the transformation @,—~ @,
Q,— Qk +v, of the position and velocity!® is a kinematical
symmetry transformation. Within this framework (as-
suming that the @, form a complete set of commuting
operators) he showed that the most general form for the
Hamiltonian of a Galilei invariant system is given by

H=(1/2M)YP -A)?*+V, (1.12)
where A and V are arbitrary functions of the coordinates
(and possibly of time). Note that this result is different
(and more profound) than our above observation concern-
ing Galilei invariance (in the standard sense) of the in-
teracting wave equation. But Jauch also showed that a
unitarily implementable local phase transformation y—
exp(—iw)y with an arbitrary differentiable function w is
equivalent to the replacements (1.2) of V and A in the
Schrédinger equation corresponding to (1.12). This ties
up the two observations.

Recently Piron'* rederived, in a slightly different
framework, Jauch’s interesting result. Levy-
Leblond!®!® was also fascinated by the connections be-
tween Galilei and gauge invariance and called for a de-
tailed analysis.

In this paper we study the problem from essentially
the opposite direction than was done in Jauch’s work.
Adopting a locality postulate, we shall arrive in a natu-
ral manner at the Galilei group of a free particle. We
then consider an interacting system, and adding the re-
quirement that localization be phase independent, we ob-
tain the unique form (1.12) for the Hamiltonian, with A
being subject to A~ A —3,w. Then we extend the locality
postulate to hold also for time dependent local phases.
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We find that consistency then requires the transforma-
tion law V— V +3,w. Finally, we study various super-
selection rules that arise in the theory and point out
their remarkable interrelationships.

2. THE KINEMATICAL GROUP

We commence with adopting the usual geometry for
the space of nonrelativistic physics:

Assumption 1: The space of events is the homogeneous
and isotropic Euclidean space E,.

From this follows the existence of the symmetry group
E(3) of Euclidean transformations, with the Lie algebra

(P, P,]=0, [J,,P])=ic, P,
[J,,J =i, J

w1 5o (2.1)
This algebra can be realized on the Hilbert space of

square integrable wave functions J(x) by setting
(2.2)

The next, and crucial, step is the adoption of a local-
ity postulate. Following the familiar argument? we sti-
pulate that the phase of a wavefunction is a matter of
convention, not only at a given point but also when we
compare phases at different points. In other words, we
demand that a local phase transformation be an auto-
morphism of Hilbert space. In view of Wigner’s theo-
rem, '® we can formalize this requirement as follows.

Assumption 2: To every transformation

Yx)—~ et ®y(x) (2.3)

with a differentiable w(x), there corresponds in Hilbert
space a unitary operator // such that

U P)x) = et @y(x).

Using the realization (2.2), we now calculate

P,~=i0,, J,~—if,x,0,.

(2.4)

(U P M) = et = id e oy(x)]) = (=10, = 8,w)(x),
i.e., under a local phase transformation (2. 3)

P,—~ P, -3,w. (2.5)

Similarly we find that

Ty Iy = €y 10 0 (2.6)
These results show that, unless we enlarge the algebra
of observables, arbitrary local phase transformations
cannot be kinematical transformations in Jauch’s
sense,!! Indeed, by setting // =exp(iF), Eq. (2.5) would
imply that

P, —3,w=l Pl =P, +ilF,PJ+..., 2.7

and since at this stage F is necessarily a function of P
and J while 9,w is a c-number multiple of the identity
operator, (2.1) tells us that this equation cannot be sat-
isfied (unless w =const,)

Suppose we postulate

Assumption 3: The algebra of observables is large
enough to guarantee that arbitrary local phase trans-
formations with a differentiable w(x) are kinematical
transformations.

How is the set {P,J} of fundamental observables to be
enlarged so as to satisfy Assumption 3? This question
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is answered by

Theoreml: In order to satisfy Assumption 3, it is suf-
ficient to adjoin to the set {P,J} the identity operator I
and the generators @, (=1, 2, 3) of linear local phase
transformations [corresponding to'” w(x)=¢,x,].

Proof: If w(x)=c,x, and if we write'® F=M"¢,Q,, then
Eq. (2.7) is satisfied provided we have

(2.8)

Since the ¢, are linearly independent, apart from (2.8)
we also have

(@ @,]=0. (2.9)
Equations (2. 8) and (2. 9) tell us that @, can be realized
by setting

Q,~Mx,.

Furthermore, with (/ =exp(iM™c,Q,) we find that

UTU ™ =d,+iM e [Q,, I ]+. ..,

and, comparing this with (2.6), using the realization
(2.10), and noting that now 9 ,w=c,, we see that consis-
tency requires

[Jk’ Ql]:ieklej- (2. 11)

Let now w be an arbitrary differentiable function, i.e.,
w(®) =75, cla, x)". The effect of the corresponding uni-
tary transformation (whose existence is guaranteed by
Assumption 2) on the operator algebra is characterized
by (2.5), (2.6), and

@ Q. 2.12)

Since 3,w and x,8,w in (2.5) and (2. 6) is a power series
in x, and since the realization (2. 10) holds, the rhs of
(2.5), (2.6), (2.12) is simply a permutation of the oper-
ator algebra, so that we have a kinematical symmetry
transformation. This concludes the proof.

Remarks: (a) With w=c,x,, Egs. (2.12), (2.5), (2.6)
give

Qk"’ Qk’
P~ P -cy

[P» Qt] =—iM3,,.

(2.10)

m?

(2.13)

Jk_’ Jk _Mﬂleglmchl
as the effect of the corresponding local phase transfor-
mation. Thus, Galilean boosts arise as particulay local
phase transformations.

(b) The Heisenberg commutation relations (2. 8) as
well as the other two relations (2.9) and (2. 11) involving
Q have the role of consistency requirements.

(¢) The algebra of observables is characterized by the
Lie relations (2.1), (2.8), (2.9), and (2.11). The struc-

ture of the corresponding simply connected Lie group
ig1e,20

(2.14)

(d) Since we passed to the covering group SU(2)7, the
wavefunctions will be vector valued representations and
should be labeled as ¢3 (x), where s, s, are SU(2)7 la-
bels. Correspondingly, the realization (2.2) of J, must
be changed to

K=SU(2)’® [T,P® (T9% Tl_M)]'

Iy~ =tey, %8, + 2y, (2.15)
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where T, is an SU(2) matrix. We then define spin T as
the difference between total and “orbital” angular
momentum,

T=J-M'QXP=3. (2.16)
The Casimir invariants of K are

C,=MI, (2.17a)

C,=T2 (2. 17b)

We can interpret C, (which arose from linear phase
transformations and indicates a superselection rule) as
Galilean mass. Because of (2. 16), the spectrum of C, is
s(s +1) with s=0, 1/2, 1,.... Since the irreducible uni-
tary representations of K are characterized by specify-
ing the mass M and the spin s (which are the kinematical
labels of a particle), we shall call K the kinematical

group.

3. THE DYNAMICAL GROUP

In order to introduce dynamics, we first make the
following definition.

Definition 1: A development transformation of an iso-
lated system is a kinematical symmetry characterized
by

P-P, J-J, Q-f(QP,J).

The motivation of this form is that the intrinsic develop-
ment must be compatible with the geometry of space,
i.e., the corresponding generator should be invariant
under space translations and rotations., We further de-
sire that development transformations be continuously
composable in an associative manner, be invertible, and
independent of order. This means that the set of all de-
velopment transformations must form an Abelian group.
The simplest possibility is that we have a one-param-
eter group. Thus, we make

Assumption 4: Development transformations form a
one-parameter Lie group T,”.

Any development transformation 7 will then be repre-
sented by a unitary operator //, =exp(iTH). Concerning
the generator H we stipulate

Assumption 5: H is contained in the algebra of obser-
vables generated by P, Q, J.

This rather obvious assumption is weaker than de-
manding that, for example, the P, form a complete set
of commuting observables. Nevertheless, when com-
bined with the P and J invariance requirement of Defini-
tion 1, it is powerful enough to tell us that®

H=H(P2, TP, 1. (3.1

Next we observe that development transformations of
T,” give rise to an equivalence relation on the algebra of
observables generated by the kinematic Lie group K. In-
deed the relation A~B iff B=// A//]* for some T is easi~
ly seen to be an equivalence relation. ?* It is therefore
reasonable to define a dynamical group G by the
following ‘

Assumption 6: The kinematical group K is isomorphic
to the quotient group modulo 7,7 of some group G.

Thus, K~G/T,#, which implies that H and the genera-
tors of K must form a closed Lie algebra. This, then,
makes the choice of the rhs in Eq. (3.1) unique, ?® and
we have
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H=p*/2M ~(,. (3.2)

Here (, is an arbitrary constant and the scale factor 2M
was chosen for convenience.

With this form of H and the already known Lie rela-
tions of the kinematical group we find that

[H,Q)=-iP, (3.3)
and, of course,
[H,p]=0, [H,J7]=0. (3.4)

The relations (2.1), (2.8), (2.9), (2.11) together with
{3.3), (3.4) form the Lie algebra of the dynamical group
G, and we observe that it is precisely the abstract quan~
tum mechanical Galilei group algebra. Its structure is
given as

C=TA% K=T, ® {SUQY® [TF® (T2 x T} (3.5)

We can write G=( ® T,¥, where( is the abstract geo-
metrical Galilei group, so that G is its scalar central ex~
tension. ** By denoting the parameters associated with
¥, 1,5 TS, SO()Y by 7, a, v, R, respectively, ex-
ponentiation of the Lie algebra leads to the familiar com~
position law

(1,a,v,R)(T,a,v,R)=(T+7,a+Ra+7v,v+Rv,RR). (3.6)

It is convenient to represent this abstract group on some
homogeneous space, The simplest choice is to take the
left coset space G /SO(3)’® T,9, whose elements® can
be characterized by the pair (7,8), Using (3.6), we find
that the left action of g on the coset space is given by

(3.7

We can identify our homogeneous space with E (x)x E,(f)
by the map (7,a)—~ (#,%) so that (3.7) gives

(r,a)—~ (7 +71,Ra+a+T1v).

b~ 4T, X—=Rx+a+tv. (3.8)

Thus, the familiar active viewpoint of the Galilei group
consists in considering it as a set of endomorphisms of
E,(x)XE,(f). The relation between (3.7) and (3.8) is an
isomorphism, i

Even though the above procedure is hardly new, it
permits us to interpret ‘“nonrelativistic time” in a pure-~
1y group theoretic manner. The one~dimensional space
E,(f) was introduced, not at the start of kinematical con~-
siderations, but rather simply as a convenience permit-
ting a simple active characterization of the dynamical
group. It is possible to use, as a homogeneous space,
not G /S0(3)’® T but, for example (/SO(3)7. Then one
is led to a representation of § on “phase space” Ey(x)

X E(p) and no explicit concept of “time variable” arises®
{cf. Appendix A).

Once, however, the choice has been made to use the
homogeneous space § /SO(3) X T2, we are led, ina
natural manner, to a sequence of incoherent Hilbert
spaces. We define, for each ¢, a Hilbert space //, of
square integrable functions by setting

P(x; 1) =exp(—itH)p(x)

and the total Hilbert space # is then a suitable direct in~
tegral of the “slices” //,. Whereas so far our observa-
bles P, Q, J, H were realized on#,,,, we can now
search for their realization by differential operators on

(8.9)

J. Math. Phys., Vol. 15, No. 10, October 1874

1763
all of /. A glance at (2.1), (2.8), (2.9), (2.11), (3.3),
(3.4) shows that we can set
P~ —id,,
Q,~Mx, +it3,, {(3.10)

= =6, %0, + 2,
H~ia,.

In particular, H assumed a double role: On each slice 4/,
it has the realization H~-{(2M)™3,5,+(,, whereas on //
it is given by i3,. This is emphasized by the usual
Schrodinger equation (1,10), which arises when one ap-
plies? the Casimir invariant (, of G, given by (3.2), on-
to the function space ¥(x;!). From this viewpoint, the
emergence of the Schrodinger eguation as a consistency
condition is related to having selected the “homogeneous
Galilei group” SO(3)'® TaQ as the subgroup which defines
a homogeneous G-space.

4. INTERACTING PARTICLES

The transformations of the basic observablesg acting on
#, which they undergo when a local phase transforma-
tion #(x; £)— expliw(x)]u(x; ?) is performed,2® can be
easily obtained if one uses the realizations (3,10}, We
get

P,—- P, ~3,w, (4, 1a)
Qy— @, +19,0, (4. 1b)
Jy—r J, =M€, Q3 1w, (4.1c)
H~H, (4.14)

Naturally, this permutation of observables (represented
by a unitary operator on #) is a kinematical symmetry
transformation. *°

Equation (4. 1b) tells us that, except on the slice t=0,
the position operator Q is not invariant under local phase
transformations, There is no reason why localization
should be independent of the choice of phase w(x) on slice
# 1.0, but depend on it on other slices. We therefore
stipulate

Assumption T: Localization does not depend on the
choice of a phase w(x).

In other words, we assume that arbitrary local phase
transformations with a differentiable «(x) commute with
the particular local phase transformations® with w(x)
=¢,x;. We shall call systems for which Q is invariant
under transformations corresponding to ¥(x ;)
expliw(X)ilx; 1), covariantly intevacting systems. In
this terminology, Assumption 7 may be paraphrased as
stipulating that all physical systems are covariantly in-
teracting. The question now arises: What characterizes
a covariantly interacting system? This is answered by

Theovem 2: The Hamiltonian of a covariantly inter-
acting spinless system has the form

H=(1/2M){(P - A+ V, 4.2)

where A and V depend on Q(f} and where, under a local

phase transformation,
A~ A, ~3,w. (4.3)

Proof: In order to satisfy the requirement that Q- Q
under an arbitrary phase transformation, we must ob-
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viously modify the realization (3, 10) of Q. We set®

Q,~ Mx, +itd, + tA,(x). (4.4)

We now calculate, with // being the representative of the
arbitrary phase transformation,

(U U W(x; 1)
=et9[(Mx, +ita, e oylx; D]+ H{/ AL *)(x; 1)
=(Mx, +itd, + 13,w)d(x; 1) + 1/ AL 9)(x; 1),
Thus, Q— Q provided that
A~ A=A, -0,w.

(4.5)
Next, we use (4.4) and H~i3,, P,~-id, and compute
that

[H,Q,]=-i(P,-A4,). (4.6)

From this we can find H as a function of the operator
algebra. We first observe that (4.6) refers to operators
defined on /. By transforming this equation with
exp(it//) we obtain, in view of (3.9), the corresponding
equation for the slice //,_,. Distinguishing operators on
this slice by putting a bar over them, we have [H Qk]

= —z(P -A »). . Since A is a power series in Q and since
[P, Q)= —zMék,, we easily find that

H=(1/2MP* - (1/2M)B A, - (1/2M)4 B, + N,

where N is an arbitrary function of §. However, this
can be trivially rewritten as

H=(1/2M)P -A)* + V¥, (4.7

where again V is an arbitrary function of Q Transform-
ing this equation with exp(~itH), we obtain H on the
slice //,, which is precisely the form given by (4. 2).

~ QED

Remarks: (a) The meaning of Theorem 2 is that the

essentially kirnematical requirement “localization should
be invariant under a local phase transformation with a
phase w(x) throughout all of //” leads to the necessity of
an interaction with fields A and V, and this interaction
has a uniquely prescribed form,

(b) In the presence of interactions the behavior of P,
J, H under arbitrary local phase transformations with
w(x) still persists as given by (4. 1a,c,d) but (4, 1b) is,
of course, replaced by @,— Q,.

(c) When Eq. (4.2) is realized by differential opera-
tors, we obtain the Schrédinger equation (1.5). This is
now invariant under “gauge transformations with a fime
independent w(x)”, i.e., under the simultaneous re-
placements

Yxs )~ e WY(x 1), A,~ A, -3,0(x).

It may be worth while to point out that, since we still
have the realization P,~ -i9,, the operator P, retains its
meaning as a translation operator even in case of inter-
actions. However, it cannot be identified with momen-~
tum. Since momentum is defined as the time derivative
of position and since time derivative of any observable
Q is given by

as

S =0=ilH,Ql+3,9,

- (4.8)

Eq. (4.6) tells us that the momentum is now given by
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P=P~A. (4.9)
Correspondingly we have

H=(1/2M)P2+V, (4.10)

Observe that both 2 and H are gauge invariant under
time independent gauge transformations (but P is not).

We now observe the following. When, in Sec. 3, we
decided to represent the abstract dynamical group on the
homogeneous space G /SO(3)’® T,9 and thus were led to
a sequence /—/ of incoherent H11bert spaces, we effective-
1y introduced a superselection rule. It is reasonable to
require that this superselection rule be made explicit.
This can be easily done if we extend our basic locality
postulate by stipulating that the phase of a wavefunction
is a matter of convention, not only in each /, but also
when we compare phases at different slices //, of /. In
other words, we demand that a local phase transforma-
tion with arbitrary, time dependent w(x, ) be an auto-
morphism of /. Thus, we replace Assumption 2 by the
more general one:

Assumption 8; To every transformation

z/)(x;t)» eiw(x,t)zp(x;t) (4.11)

with a differentiable w(x, ¢) there corresponds in the
Hilbert space #/ a unitary operator // such that

Uz t) =€t Dy(x ; 1), (4.12)

Since now states in the different //, slices are given
independent phases, it is clear that one cannot linearly
superimpose such states. More about this superselection
rule will be said in Sec. 5.

Using the realization H~id, we now see that, under a
time dependent phase transformation, H is no longer in~
variant; we rather have

H— H+3,w. (4.13)

(The behavior of P, Q, J is not affected by making w
time dependent. ) It then follows that Eq. (4.2) is no
longer consistent: Under a time dependent gauge trans-
formation the lhs transforms according to (4.13) but the
rhs is unchanged. Consistency between the overall real-
ization H ~id, in // and its realization on any slice //, can
be restored if we restrict the so far arbitrary V to fields
which, under a general local phase transformation trans-
form as

V= V+3,0. (4.14)

This completes the characterization of covariantly inter-
acting systems in our framework.

Remarks: (a) The Schridinger equation, i.e., the real-
ization of (4.2), is now invariant under general gauge
transformations, i.e., under the simultaneous
replacements

Wx; )~ etz 1), A~ A, -0, V-V+3,0.

(b) If we calculate the force P with (4. 8), (4.9), (4.10),
we find that3

P =MP XcurlA —gradV -3 A, (4.15)

which is the familiar Lorentz force. It is invariant un-
der general gauge transformations.
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5. SUPERSELECTION RULES AND GAUGE INVARIANCE

When, in Sec. 2, we demanded that local phase trans-
formations with w(x) be (unitarily implementable) kine-
matic symmetries, we were led to the well-known mass~
superselection rule [cf. Eq. (2.8)]. Another superselec-
tion rule arises when we demand that 4,— 4, — 9,w(x) be
a kinematical symmetry. To see this, take the particu-
lar phase w(x)=cx,. Denote that part® of the corre-
sponding unitary operator which acts on functions R of A
(and V), by [/ =exp(iN) and write N=M"c K, (K, is di-
mensionless). Then one has

Ak—CkzuAkU_]':Ak+'L.M-ICI[K1,A;3] tenr.
This satisfied if
(K, Ad=iM8,, 6.1

and we also have [K',, K,]=0. Since the rhs of (5.1) is in
the center of the algebra, we indeed have a new super-
selection rule for the complete system generated by P,
Q, J, H, A, V. On the space of functionals /R, the gen-
erator X, can be realized as

o

K, ~iM—r. (5.2)
1A,

It is easy to see that this new superselection rule cor-
responds to electric charge, If, for the moment, we use
conventional dimensionate units, then in Eq. (4.2) A
must be replaced by €A (and V by eV). In these units,
(5.1) gives

[K;,Ak] =i(M/e)61k9 (5- 3)

which shows that the “supersymmetry” observable is the
(reciprocal of) specific charge.

It is rather remarkable that the mass and charge su-
perselection rules follow from one and the same prin-
ciple, viz., that local phase transformations with at
least™ a linear w=c,x, be kinematical symmetries for
the interacting system. Actually, something more holds.
If we define the “gauge operator” R to be the generator
of gauge transformations with w(x)=c,x, for the entire
system, i.e., if we set

R=Q+X, (5.4)

then, from (4.2), (4.6), (5.1) we see that, as expected,
R is a constant of motion:

[H,R]=0. (5.5)

We now turn to another topic. When, in Sec. 4, we
stipulated (via Assumption 8) that time dependent phase
transformations be also kinematical symmetries, we in-
troduced an explicit superselection rule. Let us consider
the particular linear phase w(x, )=kt (% const); denote
the corresponding unitary operator which acts on H (and
P,Q,J) by [/ =exp(iD) with D=M7"EW (W dimensionless).
Then we have, because of (4.13),

H+k=[/H{/*=H+iMk[W,H] +---.
This implies that
(w,H]=-iM, (5.6)

so that the presence of W among observables gives rise
to a superselection rule. If we revert to conventional,
dimensionate units, we get

[w, )= —inM/e, (5.7)
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where the constant 6 has the dimension of time. Thus,
we are led to a superselection rule for the “time opera-
tor” (or rather, the reciprocal of “specific time”’), From
considerations concerning the measuring process,
Piron® also arrived at the conclusion that, in the stan-
dard Schrédinger representation, one has a superselec-
tion rule for time. But his assumption was that time (as
measured by clocks which are isolated from the physical
system) is a physical observable, not a parameter. It is
interesting that, without such an assumption, gauge the-
ory leads to the same conclusion,

It may be worth while to point out that, as (5.6) shows,
the observable canonically conjugate to H is the genera-
tor W of phase transformations with w=~%¢, Since H is
realized on // by id,, one may realize Wby Mt. It would
be, however, incorrect to say that W is the “time opera-
tor”: The supersymmetry operator is on the rhs of (5.6).

Since, whenever a time dependent phase transforma-
tion is performed, we must also transform V- V +9,w,
it is necessary to include in the system of observables
an operator which acts on the functionals R of V (and A)
and which generates the change V— V + k when w=~%{. We
write {/ =exp(iZ) with Z=M"%§, and find that

[g,v]=-im. (5.8)

Thus, we have a superselection rule. The observable g
which gives rise to it may be realized as
U

ﬂ —-iM A (5.9)
Clearly, g is the couterpart of W, just as K was the
counterpart of Q. However, we did not now obtain a new
supersymmetry. Indeed, using conventional units, (5.8)
becomes

[9,VI=-iM/e, (5.10)
so that the superselection rule is for the (reciprocal of
the) specific charge, i.e., the same supersymmetry that
was the result of having included the observable K into
the algebra.

We may summarize as follows: All superselection
rules are brought about by the pair Q, X (giving mass
and specific charge superselection) and by the pair W, g
(giving specific time and specific charge superselection).
The operator Q +X is the generator for gauge transfor-
mations with w=c,x,, and the operator W+ ¢ is the gen-
erator for gauge transformations with w=k{.

It is possible to slightly modify (and perhaps simplify)
the description of the system. Let us perform a gauge
transformation with

w(x, )= - fot Vdt.
Then

H-H-V=H, p_.p=p, (5.11)
and Eq. (4.10) becomes, in this particular gauge,
H=(1/2M)P2, (5.12)

Thus, H is the energy, but as seen from (5.11), it is no
longer the temporal time displacement operator when
realized on //. Once we chose this particular gauge, we
are no longer permitted to perform gauge transforma-
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tions with time dependent w. Therefore, there is no need
to have W and g in the algebra of observables. Hence,
the “time superselection rule” disappears. ¥ Further-
more, in this gauge, gauge transformations are an in-
variance transformation of the system, since H— H.

6. CONCLUDING REMARKS

The major result of this study is the demonstration of
the power of the locality principle. Combined with a few,
generally accepted and rather weak requirements, it
leads to an algebraic structure which can be identified
with the Galilei group. In particular, Galilean boosts
appear as the simplest, nontrivial gauge transforma-
tions. Adding the requirement that localization be gauge
independent, one is led to a unique interaction structure.
Light is shed on the peculiar relation between various
superselection rules,

One may consider the algebraic structure that
emerges if the locality principle is generalized to non-
Abelian transformations. However, there does not seem
to be much point in endowing nonrelativistic particles
with internal symmetries [such as SU(3)].

1t is obvious that if one starts, instead of the Eucli-
dean space, with the Minkowski space of events, one will
be led to a relativistic Galilean structure. The relati-
vistic generalization of the Galilei group has been intro-
duced by one of us a few years ago, *® starting from very
"different arguments. We plan to pursue the present ap-
proach in the relativistic framework in the future.

APPENDIX A: REPRESENTATION ON THE
TANGENT SPACE

The elements of the left coset space §/SO(3)7 can be
represented by triples (7,3, ¥). The left action of § gives

(7,2,v)—~ (T+7, Ra+a+7v, Rv+v). (A1)
We introduce a new parameter ¢ by setting

~Tv =€V,
At 7 =T +71=0, this is an invertible transformation, 7v
=€V, and then (A1) becomes
(A2)

If we identify the space (7,a,V);_., with the phase space
(or rather tangent space) E,(x) X E,(p) by the map (3,¥)—
(x,p), then (A2) gives

(7,2,V);,,~ (T+7,Ra+a—ev,RV+V)-__..

X—~ Rx+a-¢p, p—~ Rp+v. (A3)

In Ref. 26 it has been explicitly shown that this transfor-
mation group is isomorphic to the Galilei group as de-
fined on E,(x) X E, ().

APPENDIX B: INTERACTING SYSTEM WITH SPIN

The matrix realization T =X of spin is valid on every
slice //, as long as no interactions are present. In the
opposite case, however, this cannot hold, because, while
we still have [H,J]=0, we cannot have [H,Q*xP]=0,
and, hence, [H,T]#0. Thus, the general form of T will
be

T,=Z, +1f,(A, V). (B1)
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To determine f,, we make the following assumptions:

(i) T must still be an axial vector,

(ii) No arbitrary constant shall be introduced,

(iii) T be linear in the fields,*

(iv) Spin does not depend on the choice of a phase w(x).

The last requirement is on the same footing as As-
sumption 7 in Sec. 4 which was imposed on localization,
and it in effect assures us that spin is a gauge invariant
concept.

A moment’ s consideration shows that the above re-
quirements determine f, to be

fo.=(1/2M)e,, =B,

where B,=¢ .3 A, is the magnetic field.* Thus,

T,=Z,+(1/2M)te,, =,B,, (B2)
and, using the realization H~id,, we see that
[H,T,)=(i/2M)e,, =,B,. (B3)

In order to find what term H’ we must add to our H =
(1/2M)[* + V, we go to the slice 4/, ,, where (B3) gives

[A,z,]=(1/2M)ic,, 7,B,.
Since P2 and V commute with T,, this equation can be
satisfied if we put H’ =(2M)™z B,. Indeed,

(2,B,, 5] =ic,;,=,B,.

non

Transformforming back to slice //,, we thus finally have
H=(1/2M)P? + (1/2M)Z B, + V. (B4)

This interesting form of interaction was also found by
Lévy-Leblond, '° who derived it from multicomponent
Galilean covariant wave equations with arbitrary spin,
The major feature is the correct gyromagnetic ratio and
the absence of electric moments, It thus appears that
locality arguments to some extent at least incorporate
significant predictions of detailed wave equations.

In conclusion we note that the presence of the magnetic
dipole moment interaction term in (B4) does not affect
the equation of motion [H, @ ]=~-i/,.
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Spacetime algebra is employed to formulate classical relativistic mechanics without coordinates.
Observers are treated on the same footing as other physical systems. The kinematics of a rigid body
are expressed in spinor form and the Thomas precession is derived.

INTRODUCTION

This paper shows how to formulate conventional
relativistic mechanics without refering to observers or
coordinates. To emphasize the distinctive features of
this formulation, it will be called “proper mechanics.”
The common expression “relativistic mechanics” will
be avoided here because, by the most straightforward
interpretation of the adjective “relativistic,” Einstein’s
mechanics is less rather than more relativistic than the
socalled “nonrelativistic” mechanics of Newton. The
equations describing a particle in Newtonian mechanics
depend on the motion of the particle relative to the ob-
server; in Einsteinian mechanics they do not. Einstein
originally formulated his mechanics in terms of “rela-
tive variables” {such as the position and velocity of a
particle relative to a given observer), but he eliminated
dependence of the equations on the observer’s motion by
the “relativity postulate,” which requires that the equa-
tions be invariant under a change of relative variables
from those of one inertial observer to those of another.
Minkowski’s covariant formulation of Einstein’s theory
replaced the explicit use of variables relative to inertial
observers by components relative to an arbitrary co-
ordinate system in spacetime. The “proper formula-
tion” used here relates particle motion directly to
Minkowski’s “absolute spacetime” without the inter-
mediary of a coordinate system.

Minkowski had the great idea of interpreting Einstein’s
theory of relativity as a prescription for fusing space
and time into a single entity “spacetime.” The
straightforward algebraic characterization of “Minkow-
ski spacetime” by “spacetime algebra” makes a
proper formulation of mechanics possible. The space—
time algebra can be regarded as a variant of the Dirac
algebra more intimately related to spacetime than the
. usual matrix version. Proper mechanics shows how gen-
erally useful the Dirac algebra is outside its usual do-
main of “relativistic quantum theory.” Besides providing
a simple proper formulation of all the usual equations in
“classical relativistic mechanics,” spacetime algebra
brings spinors to bear on the subject; as will be shown,
this simplifies many things and brings the subject clos-
er, in its formulation, to quantum theory.

In Sec. 1, the spacetime algebra is introduced along .
with important notations needed to interpret and apply it
efficiently, For later use a number of important alge-
braic identities are set down and the spinor formulation
of Lorentz rotations is discussed.

In Sec. 2, the proper description of a material parti-
cle is given. Inertial observers are introduced on the
same footing as other physical systems; the distinction
between proper and relative vectors is explained, and
the reformulation of proper quantities in terms of rel-
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ative variables is carried out in detail,

In Sec. 3, the relation of the spacetime algebra to
the Dirac and Pauli matrix algebras is briefly explained.
It is shown how easily the usual covariant equations can
be put in proper form and vice versa. This section per-
tains only to the relation of spacetime algebra to other
mathematical systems, and it is not needed in the rest
of the paper.

In Sec. 4, a comoving frame is associated with a par-
ticle, and its kinematics are completely described in
spinor form, This gives immediately a complete and
simple formulation of the kinematics of a “rigid point
particle” (i. e., a rigid body of negligible dimensions).
In particular, the Thomas precession is derived by a
new (and hopefully, a clearer and simpler) method,
along with a complete treatment of related kinematical
results. A great advantage of this approach is that all
results can be used directly in an analysis of Thomas
precession in the Dirac electron theory, as will be
demonstrated elsewhere.

1. SPACETIME ALGEBRA

In this paper spacetime is understood to be four-
dimensional continuum (or manifold) with “Minkowski
metric” of signature minus two. Spacetime derives its
significance from the facts (or, hypotheses, if you will)
that every elementary physical event can be uniquely
labelled by a point of spacetime, and that the metric
of spacetime determines a unique ordering of physical
events,

Spacetime can be given a precise mathematical de-
scription by introducing appropriate rules for adding
and multiplying points. A vector a is said to be fangent
to a point x in spacetime if there is a curve {x(a);

0 <a <¢} in spacetime extending from the point x(0)
=x such that

azlin‘rjl al(x(a) - x). (1.1)
a

The right side of (1. 1) is made meaningful by the as-
sumption that the points of spacetime can be added and
multiplied by scalars according to the usual rules as-
sociated with vectors. However, it should be noted that
the validity of (1. 1) does not require that the sum of two
spacetime points or the scalar multiple of one is again

a spacetime point, in short, the spacetime is a

linear vector space.

The set of all vectors tangent to a typical spacetime
point x is a four-dimensional vector space 7 (x) called
the tangent space at x. An element of such a space will
sometimes be called a proper vector to avoid possible
confusion with other uses of the word vector. By mul-
tiplication and addition the elements of 7(x) generate a

Copyright © 1974 American institute of Physics 1768
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noncommutative associative algebra called the space—
time algebva (at x). This algebra has been systematical-
ly discussed in Ref. 1 and since developed into a more
extensive mathematical system especially by Ref, 2.
However, the basic multiplication law of spacetime
algebra is likely to be familiar to most readers only in
the guise of the Dirac matrix algebra, so a sketchy re-
view of the algebra is necessary to establish terminology
and a few basic relations. Relation of the spacetime
algebra to more familiar formalisms will be discussed
in Sec. 3.

The geometric product of a generic proper vector a

with itself is a scalar quantity describing the metric of
spacetime; thus,

a’>0 iff a is a timelike vector; (1.1a)
a’=0 iff a is zero or a lightlike vector; (1.1b)
a’ <0 iff a is a spacelike vector. (1.1c)

The term “scalar” here always means “real number,”
The geometric product ab of proper vectors a and b can
be decomposed into a @ sum of commuting and anti-
commuting parts; thus,

ab=a-b+al\b, (1.2a)
where

a-b=3(ab+ba)=b-a, (1. 2b)

aAb=3[a,b]=-b Aa, (1. 2¢)

and [A,B]=AB - BA, It follows from (1.1) that a-b is a
scalar quantity, the usual inner product of spacetime
vectors. The quantity a A b, called the outer product of
a and b, is a (proper) bivector (or 2-vector).

Bivectors are related to vectors by multiplication. A
bivector which can be expressed, as in (1. 2¢), as the
outer product of two vectors is said to be simple, A
bivector B in the spacetime algebra can be uniquely
that every null bivector is simple and, in fact, has a
null vector as a factor. Furthermore, every nonnull
bivector B in the space—time algebra can be uniquely
expressed as the sum of two simple bivectors or blades;
that is, there exist unique blades B; and B, such that

B=B, +B,, (1.3)

and BB, is a pseudoscalar, or equivalently B, is pro-
portional to the dual of B;., (The meanings of the terms
“pseudoscalar” and “dual” will be explained later.)

The inner and ouler product of a vector a with a bivec-
tor B can be defined respectively by

a-B=3[a,B]=-B-a, (1. 4a)
and

aNB=4(aB+Ba)=BAa, (1.4b)
S0

aB=a-B+a/B, (1. 4¢)

Using (1. 4a) together with (1. 2b) and (1. 2¢), it is easy
to prove that any three vectors a, b, ¢ satisfy the useful
identity

a-(bAc)=a-bc—a-cb=— (b N\c)-a. (1.5)

It follows that the quantity @- B defined by (1.4a) is a
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vector, On the other hand, the quantity a A B is a t7i-
vector (or 3-vector). Using (1.4c) and (1. 2¢), one can
show that the outer product of vectors is associative,
that is

(@aAb)Ac=aABAc)=aNbAc. (1. 6)

Every trivector in the spacetime algebra can be fac-
tored (but not uniquely) into an outer product of three
vectors.

It is well at this point to introduce the convention that
when parentheses are omitted inner and outer products
have priority over the geometric product; for example,
for vectors, a,b,c,d,

(@a-dyc=a-bc+a.(bc),
{a A\byc=aNbc+a/\(be),
a-bc Nd=(a.b)c N\d).

This convention is particularly useful in complicated
formulas. It has already been used in (1. 5).

The product of a vector a with a trivector 7 is the
sum of a bivector a- T and a 4-vector or pseudoscalayr
a/\ T; thus,

alT=a-T+alT, (1. 7a)
a.TE%(aT+ Ta):T-a, (1-7b)
aNT=3@aT-Ta)=-T Aa, (1.7¢)

From (1.7b), (1.4a), and (1. 2) one can establish the
useful identity

a-(bAB)=a-bB-b N(a-B), (1. 8)

where a,b are vectors and B is a bivector. Every
pseudoscalar is a scalar multiple of a unique unit
pseudoscalar which will always be denoted by ¢. Specifi-
cation of 7 assigns an orientation to spacetime. It can
be shown that

=1, (1. 9a)

and the geometric product of ¢ with any vector a is anti-
commutative; that is,

ai=—1ia, (1. 9b)

It follows that the outer product @ Ai=3(ai +ia) vanishes,
while the inner product @-i=3(ai - ia) =ai is a trivector
(called the dual of a). Every trivector 7 is the dual of
some vector ¢, that is, T=#, By (1.9a), Ti=—{, so the
dual Ti of any trivector T is a unique vector. This es-
tablishes an isomorphism of the linear space of all
trivectors to the space of all vectors. For this reason,
trivectors are often called pseudovectors.

A generic element of the space—time algebra will be
called a (propev) multivector. Every proper multivector
M can be uniquely expressed as a sum of a 0-vector (or
scalar), a 1-vector (or vector), a 2-vector (or bivector),
a 3-vector (or pseudovector), and a 4-vector (or pseudo-
scalar); that is

M={M]y+[M]y+[M], +[M]y +[M],, (1.10)

where [M], denotes the k-vector part of M. A multivec-
tor M is said to be even if [M];=[M];=0. The even mul-
tivectors compose an important subalgebra of the full
spacetime algebra.
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The veverse M of a multivector M can be defined by
the equation

M=[M]o+[M]1—[M]2"[M]a+[M]4- (1.11)

It can then be shown that the reverse of a product equals
the product of reverses, that is, if

M=AB, then M=BA, (1.12)

Spacetime algebra makes it possible to describe
Lorentz transformations completely, without resorting
to coordinates or matrices. Only Lorentz rotations
(i. e., Lorentz transformations without time reversal or
space inversion) are of interest here. Any Loventz
rotation ; which maps a generic proper vector @ into
the vector a’=f (a) can be written in the canonical form

a’ =R (a) = RaR,; (1.13a)
here R is an ever multivector, unique except for sign,
with the property

RR=1, (1.13b)

The multivector R is called a spinor, One way to estab-
lish (1. 13) is to introduce an orthonormal frame of vec-
tors y, and its “reciprocal frame” {}*} defined by the
equations

Yu")/v:é#, IJ"V=0’1;2’3 (1'14)
where 5 is the “unit matrix.” According to (1. 13a) the
transformation of y, is given by
(1.15)

(sum over repeated indices), where a}, =y"-y/, is the
matrix of the transformation. These equations can be
solved for R. One obtains (see Sec. 17 of Ref. 1)

R=31(AA)1?A where A=yly* =a’y,y".

7L=Ry,R=dly,

(1.16)

This gives R explicitly as a function of the matrix a},,
but it is of little practical use since in most applications
it is easier to determine R directly from the data.

Two special classes of Lorentz rotations are of in-
terest here, boosts and spatial rotations. A Lorentz
rotation / (@) = LaL which takes a unit timelike vector u
into the vector v is said to be a boost of u into v if it
leaves vectors orthogonal to the v A #-plane invariant,
Any vector a can be expressed as the sum of a compo-
nent a, in the v A u-plane and a component a, orthogonal
to it; thus,

a=a,+a, (1.17a)
where

a,=a- @A) Auw, (1. 17b)

a,=a @WAwwAuwl 1.1%7¢)
By definition

Laf=a, solLla,=a,lL, (1.18a)
because LE=1. It can further be shown that

La,L=L%, or La,=a,L; (1.18b)
in particular,

v=LuL=1% so L’=vu, (1.18¢c)

The square root in (1.18c) can be taken to give L ex-
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plicitly in terms of v and u [Eq. (18.14) of Ref. 1], but
the result is unduly complicated and can be avoided in
applications by using (1. 18).

A Lorentz rotation //(a) = UaU said to be 2 spatial
rotation if it leaves a timelike vector « invariant; that
is, if

Uuﬁ:u, (1.19a)
or, equivalently,
UU'T=1 where Ut=ulu. (1.19Db)

The set of all Lorentz rotations satisfying (1. 19) is the
group of spatial rotations in the space—like hypersur-
face with normal %, called the litle group of u.

Any Lorentz rotation can be uniquely expressed as a
spatial rotation followed by a boost of a given timelike
vector #, This decomposition can be completely charac-
terized by factoring the spinor R defined by (1. 13) into
the form

R=LU, (1.20)

where L and U are defined by (1. 18) and (1.19),
respectively.

The spacetime algebra associated with a single
spacetime point has been discussed. If spacetime is
geometrically flat, then, with one point chosen as the
zero vector, it is identical with the tangent space at
each of its points, In this case there is only one space—
time algebra, and the spacetime points have all the
properties of proper vectors mentioned above,

In the rest of this paper spacetime will be assumed
geometrically flat. However, the basic ideas and most
of the results apply with little or no modification to
curved spacetime. To make such applications easier
in the future, the definition of proper multivectors has
been given in greater generality than is needed in this
paper. The mathematical apparatus needed to apply
spacetime algebra to curved spacetime is developed
in Refs. 1 and 2.

2. THE PROPER POINT OF VIEW

The history of a material particle is a timelike curve
x =x(7) in spacetime, Particle conservation is ex-
pressed by assuming that the function x =x(7) is single-
valued and continuous, except at discrete points where
particle creation and/or annihilation occurs. Only dif-
ferentiable particle histories will be considered here,
and 7 will always refer to the proper time (arc length) of
a particle history. After a unit of length (say centi-
meters) has been chosen, the physical significance of
the spacetime metric is fixed by the assumption that
the proper time of a material particle is equal to the
time (in centimeters) recorded on a material clock
traveling with the particle.

The unit tangent v =v(1)=dx/d T =4 of a particle history
will be called the (proper) velocity of the particle. By
the definition of proper time, d7= ldx| = | (dx)?|1/2, and

(2.1)

The term “proper velocity” is to be preferred to the
alternative terms “absolute velocity,” “world velocity,”

vi=1,
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“invariant velocity,” and “four velocity.” The adjective
“proper” is used to emphasize that the velocity v de-
scribes an intrinsic property of the particle, indepen-
dent of any observer or coordinate system. The adjec-
tive “absolute” would do the same, but it may not be
free from undesirable connotations. Moreover, the
word “proper” is shorter and has already been used in
the same sense in the terms “proper mass” and “proper
time.” The adjective “invariant” is inappropriate, be-
cause no transformation group has been introduced. The
velocity will not be called a “4-vector” because that
term already means pseudoscalar in spacetime alge-
bra; besides, there is no need to refer to any four
components of the velocity.

The quantity dv/dT =9 =% will be called the (proper)
acceleration of the particle. The constraint (2.1) im-
plies that ¢ is orthogonal to v, that is

v-v=0, (2. 2a)
or, equivalently, by virtue of (1. 2a),
dv=0Av==-00. (2. 2b)

The motion of a particle is said to be inertial if =0,

The physical notion of an inertial observer (or sys-
tem) is fully characterized mathematically by specifying
a constant timelike vector field u, which, of course,
can be constructed from the proper velocity # of a sin-
gle inertial particle. It is often convenient to regard an
inertial observer as an inertial particle with its history
passing through the point x =0. The language can be
considerably simplified by using the proper velocity of
an observer as the name of the observer. A description
of the motion of a particle according to an observer is,
then, just a description of the motion of one particle
relative to another.

Let « be an inertial observer and x any spacetime
point (labelling some physical event). By virtue of (1.2),

xu=x-u+xNu=ct+x, (2.32)
where

ct=x-u, (2. 3b)

x=x Au. (2. 3c)

The quantities £ and x are, respectively, the fime and
position of the event x according the observer u. For
fixed f and variable x, (2. 3b) is an equation for a space—
like hyperplane with normal #, and each point x of the
hyperplane is uniquely designated by x=x Au. For
variable £, (2. 3b) is an equation for a one parameter
family of space—like hyperplanes. The time { designat-
ing a hyperplane is the proper time of the observer ex-
pressed in convenient units (say seconds); the constant ¢
(with value equal to the speed of light) converts the unit
of time into the unit of length,

Note that, by virtue of (1.2), (2.3) gives
ux=u-x+uNx=x-u—-xNu=ct-x,
Using this and %=1, one finds
%% = (wu) (ux) = (ct+X)(ct ~ X) =P - X2, (2.4)
a familiar expression for the “interval” between the
event 0 and an event x.
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Let x =x{7) be the history of a particle with proper
velocity v =dx/d 7, Differentiating (2. 3a), one finds

4, dx
vu-dT(xu)—ch—v u+v Au..

Introducing the abbreviation y=v -u =cd?/d 7 and defining
the relative velocity v by

_dx _drdx_ vAu
VeatTatar“oeu (2. %)
one obtains
vu=y(1+v/c)=L2, (2. 5b)

where L is the spinor introduced in (1. 18) to describe
the boost of # into v, Since both v and # are unit vectors,
one obtains from (2. 5b)

1=0% = (vu)(uv) = y(1 +v/c)y(1 = v/c) = y*(1 - v2/c?).
Hence

yzv-u=cc—iz =(1-v¥/ct)1/2,

ar (2. 5¢)

Any proper bivector which can be expressed as the
outer product @ Au of an observer u with some vector a
may be called a velative vector (relative to u of course)
and denoted by a letter in boldface type, as in (2. 3c)
and (2. 5a). It is not difficult to show that the set of all
relative vectors is a three-dimensional linear space, so
that relative position vectors of the form (2. 3¢c) may
serve as labels for (or, indeed, as a definition of) the
three-dimensional “physical space” of the observer u.
The adjective “relative” serves to distinguish “relative
vectors” from “proper vectors” and to emphasize that
they describe a particular relation to an observer, but
it may be omitted when understood from the context or
the use of boldface type. Any proper vector can be re-
expressed as an equivalent sum of a relative scalar and
a relative vector by multiplying it by #, as has already
been shown, for example, by (2. 3a) and (2. 5b). In this -
way a proper descviption of physical events can be
reformulated as a 7elative description of events. Sever-
al more important examples will be given to show how
easily this is accomplished with spacetime algebra,

Let p be the proper momentum (i. e,, the energy—
momentum vector) of a particle, Multiplying by #, one
obtains from p the energy (or relative mass) E and the
relative momentum p; thus

pu=p-u+p Au=E +cp, (2. 6a)
E=p-u, (2. 6b)
psc'ip/\ u., (2. 6¢)

For “physical particles” the proper (or rest) mass m is
defined by the equation p%=m?%*> 0. The relation of
proper mass to energy and relative momemtum can be
obtained from (2. 6a); thus

b= (pu)(p) = (E +cp)(E - cp) = E* - c*pP=milc!,  (2.7)

For material particles m+#0, and if the momentum is
related to the velocity by the equation

p=mc’, (2. 8a)
one has, from (2. 6¢), the famous expressions

E =mcly=mc?(1 - v¥/cH)1/2, (2. 8b)
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_E__ _ my
p= czv— myv = (1 _ vz/cz)i . (2. 8C)
Like the geometric product of proper vectors in (1.2)
the geometric product of relative vectors a and b can be
decomposed into an inner product a-b and an outer
product a Ab; thus

ab=a-b+a Ab, (2.9a)
a-b=%(ab+ba), (2. 9b)
a Ab=3[a,b]=iaxb, (2. 9¢)

Equation (2. 9¢) expresses the relative bivector a Ab as
the dual of a relative veclor axb, the i being the unit
pseudoscalar already introduced in (1.8) and (1.9). The
right side of (2. 9¢) can be regarded as a definition of
the vector cross product aXb, For further discussion
of this relation see Refs, 3 and 1,

By multiplication and addition the relative vectors
generate an algebra which is, in fact, exactly the even
subalgebra of the complete spacetime algebra. Indeed,
any element E of the even subalgebra can be written in
the form

[E]=[E]y+[E], +[E];=[E]y+ [E]y + [E} +[E]5, (2.10a)
where

[E) = [EL, (2. 10b)

[E)=[E]; +[E], (2. 10¢)

(E]=[E]s. (2. 100)

As in (1.10), [E], indicates the proper k-vector part of
E. Similarly, [El; indicates the relative k-vector part.
Of the three relations (2. 10b)— (2. 10d), (2. 10c) is of the
most interest here. It says that any proper bivector can
be expressed as the sum of a relative vector and a rel-
ative bivector. To see how this decomposition can be
carried out, consider the proper bivector F represent-
ing the electromagnetic field at some spacetime point.
Note that, by (1. 4),

" F=Pl=(F-u+FAwu,

so
F=E+iB, (2. 11a)
where
E=F.-uu=(F-u)Au=[F}, (2. 11b)
i‘B-=-F/\uu=(F/\u)-u=[F]2. (2.11¢)

The relative vector E is the electric field according to
the observer u, The wedge in (2. 11b) can be included or .
omitted as desired; this follows from (1. 2a), since

F.u is a proper vector which is orthonal to #, as shown
by (F-u).-u=F- (uAu)=[FuNul,=0. Similarly, by

(1. 7a) the dot in (2. 11¢) can be omitted or included at
will because (FAu) Au=FA\ (uAu)=0. To justify the
notation B indicating a relative vector in (2. 11¢), note
that

B=—-iF uu=(=iF).-uu=[(~iF)-u]N\u,

showing that the “proper expression” for B has the
same form as the one for E if only the electromagnetic
field F is replaced by its dual —iF, which is also a
proper bivector. The relative vector B is the magnetic

(2.12)
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field according to the observer u.

In “proper notation” the classical equation of motion
for a “test particle” with charge ¢ and mass m takes

the form
ﬁ:mczézeF.v, (2. 13)

with all symbols being defined as before, and, of
course, F=F(x(7). To reexpress (2.13) in “relative
notation,” it is helpful to note that

F'=yFu=-uFu=E-iB. (2.14)
So, with the help of (1.4a), (2.5b), (2.11), and (2. 9),
(F-v)u=3(Fv—-vF)u=3(Fou+uvF)
=y3(E1 +v/¢) + (1 +v/c)E) +y3[iB, (1 +v/c)]

=y[E-v/c+E+iBAv/c]. (2.15)

But (2. 13) gives

S ) -

pu_ T(‘bu)— ¢ dt(E+Cp)—e(F"U)u.
So

cypu= % —eE-v (2.16a)
and

1z dp o

viIpAu=—= =e(E+c'vXB), (2.16D)

dat
the usual relative vector form for the Lorentz force.

Obviously the decomposition (2. 11) of the electromag-
netic field F into electric and magnetic fields depends on
the observer. The observer need not be inertial. Thus,
the proper velocity v =v(7) of a particle in arbitrary
motion determines and instantaneous rest frame of the
particle in which the electric field is

E,=F.vv=(F-v)\v (2.17a)
and the magnetic field B, is given by

iB,=F-vv=(FAv)-v, (2. 17b)
so that

F=E,+iB,. (2.17¢c)

The subscript v indicates the rest system. Some such
notation is necessary when relative vectors in more
than one rest system are considered, The relative ac-
celeration of the particle itself in its own inertial sys-
tem is

a,=c?WAv=c%k Av. (2.18)

Multiplying (2. 13) by v and using (2, 26) along with
(2.17a) and (2. 18), one finds

ma,=mctov=eF.vv=¢E,, (2.19)

which says that a charge at (relative) rest is accelerated
by an electric but not a magnetic field, Indeed, it is by
(2. 19) that an electric field is defined in the first place.

Now, as one more example and for later use, the
proper velocity » will be expressed in relative form,
From (2. 5b),

Puu= diT (u) = (1 +v/c) + v /c. 2. 20)
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V=——=——=¢C

dr drat ¢

(2.21)

is the relative acceleration of the particle. The quantity
v can be related to a by direct differentiation of (2. 5¢),
but it is easier and more instructive to use (2,2). For
this reason, consider

o = Ou) (o) = [¥(1 +v/¢) +yV/cly(1 - v/c)
=[Pl - v¥/cD) +e v (1 - v/0)].

The scalar part 0-v=0=y[Y(1 - v¥/c)-clyv-v/c], so,
recalling (2, 5¢), one finds

%

=2, 35 —_—
aet:

y=cv.v=cv.a=0.a=c (2.22)

The bivector part is simply
tw=08 Av=c1P@-cWAv)=c?a+ctivxa), (2.23)

Substitution of (2.22) into the proper bivector part of
(2. 20) yields
2,2

vAu=clyv+ vy =c" M @+cty iy - av),

But a more helpful expression can be obtained from
(2. 23); thus,

tu = (0v) (vu) =¥ @+c v Aa)y(l +clv),
the proper bivector part of which is
D Au=c i a+ct(vAa)v]=c A a+c v x(vXa)].
(2. 24)

3. THE COVARIANT POINT OF VIEW

Before continuing the proper description of mechanics,
a brief discussion of its relation to more conventional
formulations may be helpful.

Given an orthonormal frame {y,}, the coefficients
&, of the metric tensor (relative to that frame) are
determined by the equation

(3.1)

This equation will appear familiar to anyone acquainted
with the Dirac matrix algebra. Indeed, the spacetime
algebra used here is algebraically isomorphic to the
algebra generated by the Dirac matrices over the real
numbers (a subalgebra of the full Dirac algebra over
the complex numbers). It is important to understand the
differences between these algebras. The y, in (3.1) are
regarded as vectors, whereas the corresponding Dirac
matrices are ordinarily related to vectors only indirect-
ly with the help of spinors. The Dirac matrices are
hardly used except in connection with spin-% particles,
80 one gets the impression that the Dirac algebra mere-
ly describes some property of spin. On the contrary,
(3.1) is here a direct expression of the metric of
spacetime as a rule for multiplying vectors, from
which it follows that the full spacetime algebra direct-
ly expresses basic geometrical properties of space-
time, It is as applicable to any classical theory as it is
to the quantum theory of spin-3 particles, The fact that

guv=%(7u7v +7’v7u) =Yu* Y.
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the 7, can be represented by 4 X4 matrices is irrelevent
to any geometrical or physical application of space—
time algebra. Indeed, matrices introduce unnecessary
mathematical complications and obscure interpretations
even in the Dirac electron theory. This has been estab-
lished in Refs. 4 and 5 and will be discussed more fully
in a forthcoming paper,

With u = ¥, being the proper velocity of an inertial ob-
server, the relative vectors

C:=vYe="i Avo (=1,2,3) (3.2)

compose a basis for the space of all relative vectors,
The 0; can be represented by the 2 X2 Pauli matrices,
from which it follows that the even subalgebra of the
spacetime algebra is isomorphic to the Pauli matrix
algebra., But again, matrices are of negative value. For
example, from (3. 2) one obtains

(3.3)

where ¢ is the unit pseudoscalar, a fundamental geomet-
rical quantity; on the other hand, no geometrical signifi-
cance is ordinarily attributed to the corresponding
matrix equation. Moreover, the simple relations (3. 2)
and (3. 3) between the y, and the o; do not obtain if the
v, are to be represented by 4 X4 matrices while the

0; are represented by 2 X2 matrices, For purposes of
comparison with matrix representations of the Lorentz
group, it should be noted that (3. 2) enables one to write
A=y, ypyey* =ad+ (@} +ado,+ajo,0, in (1.16). So (1.16)
can be represented as a 2 X2 matrix, which the work of
MacFarlane® shows immediately to be the representa-
tion of a Lorentz transformation in SL 2(C).

00,05 =% ="y471Y2¥3)

To transcribe proper equations into covariant tensor
form, it is necessary to introduce a set of coordinates
{x* =x*(x); 1 =0,1,2,3}. It suffices to consider a set of
“Cartesian coordinates,” which can always be written in
the form

x¥ =gt (x)=x-9*, (3.4a)

where {-y”} is an orthonormal frame of constant vectors
with reciprocal frame {y*}. Equation (3. 4a) expresses
the coordinates as a function of the point x, The inverse
function expressing the point x as a function of the co-
ordinates {x"} is

x=x(x% 2, 5%, 2%y =2ty . (3.4b)
One readily verifies that

oOx* =9*, (3. 5a)

0uX =Y, (3. 5b)
where

aus% =y,+0 and D=4"3,. (3. 5¢)

Indeed, the relations of the form (3. 5a, b, ¢) are com-
pletely general, obtaining for any set of coordinates.

As an example, the classical “Lorentz equation”
(2. 13) will be put in covariant form. The components
of the velocity are

v'=v-y* and v,=v-y,,

Since the y* are constant,
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The tensor components of the electromagnetic field F
are

F*=y* F-y¥ =F.(y* Ny*)=- F",

and the expression for F in terms of the F*¥ is
F=3F", Ny,

So, with the help of (1.5),
F-v=3F*"y, N\y,)-v=5F"(y,0,- v,7,) = F*y,,,
y* . F.v=F*",,

Thus, if (2.13) is “dotted” with v*, it can be given the
familiar covariant tensor form

dv*

2 Uy,

mce =eF*%p .
aT v

(3.6)
The covariant equation (3. 6) describes the motion of
a “test charge” relative to an arbitrarily chosen set of
(Cartesian) coordinates. In contrast, the proper equa-
tion (2. 13) is simpler because it is formulated and, as
will be shown in a subsequent paper, can be solved
without reference to any set of scalar coordinates.

It is a simple matter to reexpress any covariant ten-
sor equation in proper form. But the converse is not
true; for example, the important spinor representation
(1. 13) of a Lorentz rotation has no simple tensor form,
nor, of course, does the Dirac equation. Therefore, the
spacetime algebra is’a more powerful mathematical
tool than conventional tensor analysis.

4. PROPER KINEMATICS OF A RIGID POINT
PARTICLE

As before, let v and © be, respectively, the proper
velocity and the proper acceleration of a material point
particle, From the fact that v.v=0, it follows that it is
always possible to find a bivector valued function &
= £(7) such that

4.1)

Indeed, as shown by (2.17) and (2.11), £ submits to the
decomposition '

v=Q-v.

Q=a,+if,=0v+B, (4. 2a)
where

a,=Q-vw=0v=0/N\v,

iB, =2 Avw=(Q\v)-v=B,
Noting that

B-v=0 (4. 2b)

and using the identity (1. 5), one shows easily that (4. 2a)
satisfies (4.1). So any choice of B in (4, 2a) will satisfy
(4. 1) provided only that B-v=0.

A coming frame of vectors e, =e,(7) (1=0,1,2,3) can
be introduced by the equations

(4. 3a)

where {y,,} is a fixed orthonormal frame of vectors, and
R =R(7) is a unimodular spinor, i.e.,

e,=Ry,R with ¢g=v=x,
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RR=1, (4.3b)
with the equation of motion
4R _,
R_dT =3QR (4. 3¢c)

Frequently, it is convenient to adopt the initial condition

R(0)=1, or equivalently e,(0)=y,, 4.4

but this will not be required in this section.

Equation (4. 3a) is a Lorentz rotation of the frame
{y.} into the frame {e,(7)} determined by the spinor
R(7). From (4. 3a,b) one shows easily that e, re, =y, - y,,
so the e, are orthonormal. The quantity Q is the angular
velocity of the spinor-valued function R =R(7). Solving
(4. 3¢) for Q and differentiating (4. 3b), one finds

Q=2RR=~-2RR=-2RR=--0, (4. 5)

Since R is an even multivector, so is f2; more particu-
larly, by virtue of (1.11), (4.5) implies that Q is a
bivector.

By differentiating (4. 3a) one can obtain, with the help
of (4.5), a set of differential equations for the ¢, which
is equivalent to the single spinor equation (4. 3c); thus

é,=Ry,R+Ry R
=12RR)Ry, B +iRy, RQRE),
or

éu=%[gyeu]=g'eu' (4' 6)

This displays Q as the angular velocity of the comoving
frame, and for u =0 it is seen to be identical to (4. 1).

The arbitrariness in £ which exists when (4. 1) is
considered alone obviously does not exist when the com-
plete equations (4. 6) for a comoving frame are given.
But this is worth proving by solving (4. 6) explicitly for
Q. Introducing the reciprocal frame {e“} defined by the
equations

et e, =yt ey,=06) (4,v=0,1,2,8), 4.7
one can prove the identities

e.e'=e,-e" =4, (4.8)

e,Qe" =0 4.9

(sum over repeated indices). Identity (4. 9) requires that
Q be a bivector. Multiplying (4. 6) by ¢” and summing,
one gets

eet=é,Ne*=(Q-e,)e"
=3(Re, ~e,Q)e* =104,
So
(4. 10)

Clearly, there are many comoving frames which can
be associated with the history of a particle, since with
only the conditions set down so far the history x =x(7)
itself determines only one of the e¢,, the velocity e;=v
=%. A frame more intimately related to the history is
easy to construct. Suppose the angular velocity @ has
the form

Q=3¢,e" =3¢, N\e*,

R=Kie1€)+Ky€ 85+ K3eqes (4.11)
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where the k; ({=1,2,3) are-scalar quantities. Substitu-
tion of (4. 11) into (4. 6) yields, with the help of identity
(1.5),

eg=Kqey,

€1=Ki€y+Ky€y,

. 4,12
€9=— Ki€y + Kg€3, ( )
€3=— Ky€s.

These are the so-called Frenet—Serret equations for the
particle history. It follows that the ith curvature k; of
the history satisfies

(4.13)

The angular velocity  of the Frenet frame e u} satisfy~
ing (4.12) is called the Darboux bivector, because it
generalizes the Darboux vector of classical differential
geometry. It is not difficult to show that the Frenet
frame determines all the derivatives of x =x(7), and
conversely, if none of the x; vanish the Frenet frame

is uniquely determined by the derivatives of the history.
One important feature of the formulation given here is
that the single spinor equation (4. 3¢) with Q related to
the ¢, by (4. 11) may be easier to solve than the simul-
taneous set of equations (4. 12).

In spite of the geometrical significance of Frenet
frames, other choices of a comoving frame are more
important physically, Every material particle has some
structure, usually because it approximates some extend-
ed body. A comoving frame can be used as a basic .
description of such structure. In particular, the comov-
ing vectors ey, €,,¢; may be used to specify a frame
fixed in a rigid body (of negligible dimensions) moving
with the particle; then Q is the propey angular velocily
of the rigid body and the spinor R completely describes
any changes in orientation of the body. With this inter-
pretation Eqs. (4. 3) will be said to describe a rigid
(point) particle. The dynamics of a rigid particle can be
described by relating Q to the motion of other physical
system. But to facilitate the analysis of dynamics, it is
worthwhile first to study the general kinematics of
comoving frames in more detail.

Ki=€;-€; =e;- e, =Q-(e; \e)).

The Lorentz rotation (4. 3a) can be decomposed into a
spatial rotation and a boost in the manner described in
section 1, Take # =7y, and write as before

R=LU, (4.14)

where L satisfies (1.18) and U satisfies (1.19). By sub-
stituting (4. 14) into (4. 3c), an equation of motion for the
spinor U can be obtained; thus

R=LU+LU=}QLU.

So, since LL =1,

U=3wU, (4.15a)
where

w=LaL-2LL. (4. 15b)
The angular velocity w can be separated into two parts

W=Wr+Wg, (4.16a)
where

wp=Lovl - 2LL, (4. 16b)
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w,=LBL=[LQLl, (4. 16c¢)

To prove this, note that since v=RuR = LuL,
L@ v+ QA L=LL=LQLu=(LQL)-u+(LQL) \u.

Since a Lorentz rotation does not mix multivectors of
different degree, one gets by separately equating vector
and trivector parts

f£Q-vL=(EQL)-u and LQAvL=(LQL)Av,
which on multiplication by # gives, as in (2.11),

EQ-vwL=(LQL)y-uu=[LQL}, {4.17a)

and

LQAvoL=(LQL)Auu=[LQL], (4.17n)

Recalling (4. 2), one obtains (4. 16) immediately by using
(4.17a,b) in (4. 15D),

The rigid frame {e; = Ry,R; i=1,2, 3} describes the
orientation of a rigid body in the instantaneous rest
system of the particle. The rigid frame

Le,L=Uy,U

provides an equivalent description of the rigid body in
the inevtial system U obtained by a (de)-boost from v.
Alternatively, in the inertial system it is convenient to
use the frame of relative vectors

e‘EUaiUT=U}/‘ﬁ’)’=Ee‘0L (4. 18)

where, as before, 0;=vy;y,and U ' EyOﬁyo. Differentiat-
ing (4. 18) and using (4. 15a) as well as U'U=1, one
finds the equation of motion for the ey;

(4.19)

These equations describe a precession of the rigid body
which according to (4. 16) can be separated into two
parts, the Thomas precession with angular velocity w
which is due to the acceleration of the particle, and the
(generalized) Larmoy precession with angular velocity
wy of a nonaccelerated body.

€;=W- € =Wr- G +wWr €y

The Thomas precession can be expressed in terms of
u, v, and v. Introducing the symbol w for the angular
velocity of the boost, one has

L=4wL or w=2LL=-2LL. (4. 20)
Differentiating L? = vu,
. 4L - 7 o l(7? _1 Ny 2
=7 =LL+LL=35(wL*+LwL)=3(w+LwL)L*,
then dividing by L« and using Lv=uL, one gets
20 =wv + LwuL, (4.21)

Now since L is a function of # and v only, the bivector

w is a function of the vectors #, v, and ¥ only; hence the
trivector w u must be proportional toj v u, It
follows, then, from (1.18) that Lw uL=w u. So the
trivector part of (4. 21) yields the equation

w/\(@w+u)=0. (4. 22)

This can be solved for w by dotting with v and using
(1. 8), thus

[wA@+w)] - v=ww+u)-v-(w-v) \@u+v)=0,
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and since v=w v, whlch is easily established by dif-
ferentiating v = RuR LuL one obtaing

oA (v +u) 3
ve(veu)

vwrvAu
lyv-u

w=2LL= (4.23)

Now from the vector part of (4. 21) one finds, again
using v=w-v,
é:Lw-ui:w-v, (4. 24)

from which one easily obtains the following expression
for the relative vector part of w

(4. 25)

This result can also be obtained directly from (4. 16b)
by using the fact that wy=[wg]y, which can be proved
from (4. 15a) and (4. 16¢).

From (4. 23) and (4. 25) one obtains an expression for
the relative bivector part of w:

W Av Auu

l+vu

[w)y = (w- wyu=LovL,

[wly= (w N\ u)u= =2LE - LowL. (4. 26)
This is, in fact, identical to the Thomas expression
(4.16b). To show this, recall from (1, 18b) that L =uLu;

so, by (4. 20),

ol =u(2Lul) =w(@LLyu = ~ uwu = [w];  [wy,

the last step being the same as in (2. 14),
To sum up, the Thomas angular velocity w, can be
written in the several different forms:
~ ~e o Le s (0 Ao Auu
wp==[2LL}y=[2LL]y- “——
03(1 +‘y)

the last expression as a relative bivector being obtained
directly from (2. 23); it is identical to that obtained by
Thomas’ and again by Bacry® in a review of Thomas’
work,

_ vk
l+v-u

ivXa, (4.27)

The problem remains to express the Larmor bivector
wy in terms of relative vectors. First express Q in
“relative form”

Q=a+ip, (4.28a)
oa=Q uu, (4. 28b)
iB=2 N\uu, (4. 28c)
Then, write Q in the form
2=, +Q,, (4. 29a)
where
¥=oAu/|vAu|=v/]|v|
is the unit relative velocity of the particle, and
2, =3OV +VQ)V = a, +1B,, (4. 29b)
2,=3[9, V[V = a, +iB, (4. 29¢)
with
a,=3[a, V[v=a AW = — (@ x¥) x¥, (4.30a)
Q=a-qa, =03, (4. 30b)

and similar relations for 8. The significance of (4. 29)
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lies in the fact that §, commutes with Vv while £, anti-
commutes with ¥, and since the bivector part of L is
proportional to ¥, one has the relations

LoL=-fLg,-9, (4. 31a)
Lo r-1 -q.1° (4.31b)
Hence, using L?=vu=y(1 +c lv), one gets
eL=9,+9,1%
=Q+(y=1)Q, +c v, (4.32)
Now (4. 30a) shows that 8,v=BAv=iB8Xv, so
Qv=aAv+iB Av=—BXv+iaXy. (4. 33)

Decomposing (4. 30) into relative vector and bivector
parts, one gets

EQL=a+(y-1)a,-ctyBxv
+i(B+ (y = 1B +c yaxv), (4.34)

The relative bivector part of (4. 34) gives the desired
expression for the Larmor bivector:

wy=[EQL],=i(B+(y- 1)B, +c lyaxvy)

(o < -
-z( (y_l)(ﬁxv)xv+ciyaxv).

The Thomas bivector can also be expressed in terms
of @ and B, Replacing F by € in (2. 15), one finds

(4. 35)

v =(R-v)v= (8 vu)uv
=y(cta-v+a+clvxBy(l - cly)

=Y a+cla-vw+clvxp)

+iyic vy X a+c 2 (BXV) XV), (4. 36)
Using this in (4. 27), one obtains
wp= 2] Bxv)xv+ =L yxa, (4.37)
T Teveu” 2(1+) (1+) R

Finally, adding (4. 35) and (4. 37) one gets for the total
angular velocity

w=wT‘+wL=i(ﬁ+c—(lz+—) aXV)-—zw

and substituting this into (4.19), one gets for the equa-
tions of motion of the rigid body in the inertial system

(4.38)

&=w-g;=—iwN\e;-wxe;
'ydei _ Y x
“cat ( ﬁ+c(1+y)"x°‘) &

This result agrees with Thomas, | though it may be
more general than he realized, It applies to any motion
whatever of a rigid point particle. All dynamics lie in
the specification of @ and B, or equivalently of Q.

(4.39)

The precession of a rigid body can be described
either by equations (4. 6) or by (4.37) (or better by their
corresponding spinor equations). Failure to distinguish
between these two different modes of description can
cause confusion. The former describes the precession
in the instantaneous rest frame of the rigid body, while
the latter describes an equivalent motion of a rigid body
in some arbitrarily chosen inertial frame, It is worth-
while to work out the relation of the (actual) axes e; of
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the body in the instantaneous rest frame to the equiv-
alent axes e; in the inertial frame, Using (4.18) and the
decomposition (4. 30) with « replaced by e;, one finds

eu=epvu=Le,LL=Le;L
=L} +ej
=y(1-clv)e}+e; - e}

=cle; v+e;+(y—1)e;cvv.

Hence,
e;ru=clyv-e,, (4. 40a)
and the relative vector part is
r-1) 2
e; Nu=e;+ . e;-vv=e,+-cz—()%1—)e,-vv. (4. 40b)
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APPENDIX: ERRATA TO REFERENCE 1

Since this paper elaborates certain parts of Ref. 1, it is ap-
propriate to include here the following list of errata to that
monograph: The last line of Eq. (3.12) should read

+(=1)5"ag Ao Aay) s (bgppy Ae oL ADJBIADGAL L. AD_,.

Delete the last minus sign on the right-hand side of Eq. (6.16).
Equation (19.22) should read

E’'+iB' =E, +B(E, +v XB) +i[B, + (B, — v xE)!.

Equation (20.2) should read v!+v,=6¢;. Insert a factor of 3 on
the right-hand sides of Eq. 1.5) and (21.20) and in front of
R¢ g, in Eq. 21.7). Delete the explicit factors of  from Eq.
(21.10). Dispense with the pseudoscalar part of (22.3) and de-
lete Eq. (22.5b). Equation (23.15) should read C;,=— Cy;.
Equation (24.14) should read C Ekak. The sentence following
Eq. (A7) should read “where the signature s is the maximum
number of linearly independent vectors....” Replace the sub-
script 7 in (A12) by 1. Six lines after Eq. (Bl), the sentence
should begin “If T=0,....”
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A spinor formulation of the classical Lorentz force is given which describes the precession of an
electron’s spin as well as its velocity. Solutions are worked out applicable to an electron in a

uniform field, a plane wave, and a Coulomb field.

INTRODUCTION

Every evidence indicates that the Dirac theory pro-
vides an optimal description of electron motion, but for
many purposes it is unnecessarily complex. The classi-
cal model of an electron as a point charge is sometimes
adequate, but of course it gives no account of electron
spin. The minimal generalization of the classical model
is obtained simply by expressing the Lorentz force as a
spinor equation. The main objective of this paper is to
study the solutions of this equation in some detail.

This approach has several advantages. As will be
demonstrated, it provides a new and (it seems) simpler
way of integrating the classical Lorentz force and ex-
pressing the orbit as a parametrized algebraic equation.
Besides providing new insights into old results, the
spinor solution describes the precession of electron spin
with the same accuracy as it determines the orbit. The
classical spinor equations are closely related in form to
the Dirac equation. This narrows the gap between classi-
cal and quantum mechanical formulations of electron mo-
tion and hopefully will help clarify the relations between
them,

Since the description of electron motion given here
would be impossible without the mathematical apparatus
developed in Ref. 1, familiarity with the notations and
results given therein is presumed.

Section 1 shows how classical electrodynamics can be
used to derive a spinor equation of motion for a localized
charge distribution. As a important special case, the
BMT equation is derived and shown to be already in the
work of Thomas in a different form. The spinor formula-
tion of the Lorentz force is given and it’s applicability
to a description of the electron is discussed.

In Secs. 2, 3, and 4 the spinor Lorentz force is inte-
grated to describe the motion of a charge in a uniform
field, in a plane wave and in a Coulomb field. The prob-
lems are worked out in considerable detail to illustrate
fully the efficiency of spacetime algebra in practical
computations. Though the spinor solutions for uniform
and plane wave fields have been found previously by
other authors, the treatment here is unique in many
details. I believe the spinor solution for the Coulomb
field is published here for the first time.

1. PROPER DYNAMICS

In Sec. 4 of Ref. 1 the kinematics of a rigid point
particle were expressed in terms of its proper angular
velocity . Beforethe equations of motion can be solved,
dynamical assumptions must be made to express  as a
definite function of the proper time 7, These depend on
the nature of the particle. As an example of great im-
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portance, typical assumptions of classical electrody-
namics will be put into proper form here and related to
a model of the electron.

The classical force on a localized charge distribution
at rest is, after a multipole expansion,

f=eE+p: VE+ Vi B+---, (1.1)

Assume now that the charge distribution can be re-
garded as a particle (of zero extent) with total electric
change ¢, intrinsic electric dipole moment p, intrinsic
magnetic dipole moment g, and that the higher multi-
pole moments vanish or are negligible. Agsume also
that (1.1) is an expression for the relative force f on the
particle in its instantaneous rest frame, more specifi-
cally, that

f=FfNAv=mc¥v=fv. (1.2)

For vanishing p and i, then, (1.1) and (1.2) reduce to
the Lorentz force as already shown in (I.2.19). There~
fore, it is only necessary to express the last two terms
in proper form.

Define now the proper moment bivector M of the parti-
cle by the equations

M=_p+ip, (1.3a)
—p=M'UZ), (1-3b)
k=M Avv. (1.3¢)

In the instantaneous rest system F=E+{B where E

= F . vv and {B = F A vv; so, for instance,
M.F=—p.E-pu B, (1.4

which is the familiar classical expression for the energy
of electric and magnetic dipoles. The second term of
(1. 4) by itself can be written

peB==[(MAv)-v]-F=(MAv)-(vAF). (1.5)

The formulas used in (1.5) to rearrange the inner and
outer products are established in Refs. 2 and 3. The
proper form for Vin(1.1)is» O, so

pV==(M-0)A2) - (0 AD)==M-(v AD). (1.6)
Substituting the proper expressions in (1.1), one gets
t=fAv=eF-vv=M-(0 AD)F-vv—v AOMAv) - (vAF)

(1.7)
and substituting this in (1. 2) and dividing by v one ob-
tains finally

mce=f=[eF-M-(uAQ)F = AOMNv) - (v AF)]-v.
(1.8)
The form of this equation suggests taking the term in

Copyright © 1974 American Institute of Physics 1778
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brackets to be £, but as (I.4.2) shows, an expression for
v determines only part of £, so additional dynamical
assumptions are required.

In order to get equations describing the motion of an
electron, assume that p=0, or equivalently,

v-M=0. (1.9

With this condition (1.5) can be replaced by the simpler
relation

LB=—M-F, (1.10)

Next assume that M has constant magnitude and is pro-
portional to the spin (intrinsic angular momentum) bi-
vector S, that is,

M=c)\S, where A=ge/2mc?, (1.11)

the constant g being the usual gyromagnetic ratio. The
relation (1.11) obtains if the magnetic moment arises
from a circulating charge distribution. If the distribu-
tion has a constant ratio of charge to mass density, it is
easy to show that g=1, in disagreement with the value
£=2 which obtains for an electron. However, other
assumptions about the structure of the particle will give
almost any desired value for g.

From (1.9) and (1.11) it follows that
v+S=0. (1.12)

There exists a unique proper vector s called the spin
vector such that

S=isv=isAv. (1.13a)
This can be proved simply by solving for s; thus
=-iSv=iSAv. (1.13p)

It follows from this that s v =0. The spin can now be
related to the kinematical equations (1.4.3) for a rigid
point particle by writing

s=1s]|e;. (1.14)

But to get a definite functional form for the equations,
classical dynamical considerations are helpful, at least
as a guide.

For a magnetic dipole at rest in a magnetic field the
classical theory gives the famous equation for the
Larmor precession of the spin,

ds

48 _ uxB.

a7 (1.15)

More generally, the classical theory adds a term pro-
portional to VXE to the right side of (1.15), but, follow-
ing Thomas, this can be neglected in the first approxi-
mation. To put (5.15) in proper form in accordance with
the preceding assumptions, write

s=sv=sAv, (1.16a)
U=cAB=cAsv, (1.16Db)
iB=B=(F Av)v. (1.17)

Also, it is necessary to take account of the fact that
(1.15) was derived for an inertial frame rather than an
instantaneous rest frame. This can be done by inter-
preting the left side of (1.15) as a special case of ¢S Av
(just as was done for the acceleration in (I. 2. 19)],
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rather than as cd(sv)/d7, which can be shown to be
inconsistent with the condition s -v =0. After noting that

uxB= - u,iB]=3[iB, 1],
(1.15) can be put in the form
c§ ANv=c>3[B, sv]=cM[B, slv=cAB -sv.
Multiplying by v and using
(SAVv=(SAv) v=5~($-v)v
=8+ (- s)v=5~ () +s,

which is a consequence of s-v =0, one obtains the equa-
tion of motion for s:

§=MB+s—(v+s)s=(dv+2AB) s (1.18a)

This is the so-called Bargmann— Michel—Telegdi
(BMT) equation.* Since derivatives of the field were
neglected in the derivation of (1.18a), the same assump-
tion must be made in the corresponding equation for ».
Hence, in (1.18a)

. e? e?

UU—W(F"U)U—W(F—B). (1.18b)
While equations (1.18a,b) hold rigorously only for a
homogeneous (i.e., constant in time and uniform in
space) field F, they may serve as a useful approxima-
tion under other conditions. Indeed, Thomas used them
in a different form to calculate the spin precession of an
electron in an atom.

According to (1.14), (1.18a) is an equation for the unit
spacelike vector e;. Comparison with Egs. (I.4. 2a),
(I.4.3), and (I.4.6) suggests that Egs. (1.18a,b) be
interpreted as equations of motion for a rigid point
particle with angular velocity

. e ge
—_ + — F. + F
Q=ov KB-——E( v)v ——-22 ( /\v)v

€
=W[F+(g/2_1)3]. (1.19)

For an electron, according to atomic theory, g=2, in
which case (1. 19) reduces to the strikingly simple form

e
Q= F=F
and the spinor equation for an electron is
S 1op_ €
R=3QR WFR' (1.20b)

Of course, the argument leading up to (1.20) can in no
sense be regarded as a derivation from any consistent
classical model of the electron as a spinning charge dis-
tribution. However, -an equation exactly of the form
(1.20b) has been derived as an approximation of the
Dirac equation [Eq. (6.17) of Ref. 5], though the signi~
ficance of the approximation is not entirely clear.
Therefore, it is interesting that (1.20) can be tested
directly by experiments on the spin precession of elec~
trons moving through a constant field, ® and that the
anomolous magnetic moment of the electron can be
evaluated by using (1.19).

Equation (1. 18a) describes the spin precession in the
instantaneous rest frame of the particle. The equivalent
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equation describing spin precession in an inertial frame
can be obtained directly by expressing the proper
angular velocity given by (1. 19) in relative form and
using Eq. (I.4.45); write

n:a+iﬁ:7n-%z1«*+(y_m—iz>3,
F=E+iB,
and, with the help of (I.4. 34),
B=F-F.pv=(1-PE~(eE-vw+clvyXE)
+i{B = (c'vXE + c"¥BXv) Xv)}.

From these equations, expressions for & and 8 can be
read off directly, which, on substitution into (I. 4. 36)
and some rearrangement of terms, yields

. e e e 7 A
w--[w”(‘-w)]“(mm'%)v“
- (1.21a2)
'yz .

e )\B"
T ) \met” vv.

So the equation for the spin o= [s|e; in the inertial sys-
tem is, by (I.4.39),

_Ydo_

= =wX
o= 25 =wXo. (1.21b)

This is exactly the result obtained by Thomas [Ref. 7,
his Eq. (4.121)], and proves directly its equivalence to
the BMT equation (1. 18a)

Equations equivalent to (1.20b) have been discussed by
other authors.*®° However, the form (1.20b) is easier
to handle than other forms because it is supported by
the spacetime algebra. Equation (1.20b) describes
precession of both electron spin and vélocity with the
same degree of accuracy that the Lorentz force de-
scribes electron motion. Even apart from equations of
spin, it is sometimes easier to solve than the Lorentz
equation. For these reasons, Eq. (1.20b) is important
enough to be given a name and its basic solutions will be
thoroughly studied in the following sections.

No attempt will be made here to generalize (1. 20) to
get a more precise description of the electron, since,
short of the full Dirac equation, the best procedure is
unclear. Equation (1.20) can be used in connection
with quantum theory by taking the spin to be the quantum
mechanical polarization vector. It will be referred to as
“the spinor Loventz force” or as “the equation of motion
for a vigid test chavge”; the adjective “test” serves to
indicate that radiation of the charge is not taken into
account, while the adjective “rigid” indicates that a
complete comoving frame is described. Of course, the
“rigid test charge” is most important as a model of the
electron if the charge e is negative or a positron if e is
positive.

2. RIGID TEST CHARGE IN A HOMOGENEOUS
FIELD

The spinor equation of motion R=1QR for a rigid
point particle with constant proper angular velocity £
integrates immediately to

©

' R=exp(ﬂ‘r/2)=§6%(%ﬂ_f)", (2.1)
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where the initial condition R(0) =1 has been adopted.
With the dynamical assumption

Q=2F=(e/mcdF, (2.2

the spinor (2. 1) describes the motion of are rigid test
charge in a homogeneous electromagnetic field F. In

particular, it describes the precession of the velocity
and spin of an electron. Thus, the electron velocity v
=v(7) and spin s =s(7) are given explicitly by

v= Rvoﬁ = exp(FAT/2)vg exp(FAT/2),
s =RsyR= exp(FAT/ 2)30 exp(FAT/2).

(2.3a)
(2. 3b)

The history of the electron can be obtained by integra-
tion from (2. 3a). To do this, it is convenient to assume
that F is nonnull. The alternative case of a homogeneous
null field has little practical significance; in any event

it can be treated separately if necessary.

Since F is assumed to be nonnull, in accordance with
(I.1.3), it is subject to the canonical decomposition into
orthogonal blades:

F=af +Bif=fz, (2.4a)
where a and 8 are scalars,
z=a+if with a=0, (2. 4b)
and f is a simple unit timelike vector, that is,
f?=1 and [fl=f. (2.4c)
Substituting (2. 4a) into (2. 1), R can be written
R = exp(faxr) exp(ifAT) = (coshaAT + fsinhaAT)
X (cosBAT + if sinBAT). (2.5)

Now using (2.4c) and (1. 1. 4), the initial velocity v, can
be decomposed into a component v, in the f-plane and a
component v, orthogonal to the f-plane; thus

g =120y = vou+ vy, (2.6a)
where

vou=F(f +vo) = 5(vg = foof) =~ if (if ) A v, (2.6b)

vor=F(f A vg) = 3(vy + fuof) == if (if ) * vg. (2.6¢)
From (2.5b, c), one has

Sogn=Ff+ vo==vqf, (2.7a)

Jopr=f N vy=wgrf. (2.7b)

Using this and recalling vyi = — vy, one finds
vou eXp{~ farT/2) exp(— ifBAT/2) = exp{faAT/2)
X exp(= ifBAT/2)vgn,
(2.8a)
g, exp(— faAT/2) exp(— ifBAT/2) = exp(— faAT/2)
X explifBAT/2)vy; .
(2.8b)

So, substituting (2.5) in (2. 3a) and using (2. 8), one
obtains
dx

= (2.9

v==== exp(faArT)ve, + exp(ifBAT)vy..
This can be integrated immediately to get the history

x=x(T):
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X - :._(e_xP(fz;T) - 1.) Feug +_.2‘:_’L.._.__(e (zfgi\f) bl 1 (if} ~vg.

{2.10)

This solution is valid even if =0 and/or p=0, as is
easily established by expressing the exponential as a
power series.

It is worth noting that, more generally, integration of
the equations of motion can be carried out in essentially
the same way as above when z is any function of 7 as
long as f is constant. This situation obtains when one
has fields with fixed direction but spacial and/or
temporal variations in magnitude.

The problem remains to reexpress the solutions (2. 9)
and (2.10) in terms of relative vectors such as the elec~
tric and magnetic field strengths E and B, because these
quantities have direct observational significance. To
accomplish this, it is necessary to relate the decorpo-
sition F=E +iB relative to a given observer « to the
canonical decomposition (2.4) which is independent of
any observer. The relation is a simple one in the case
that

FAu=0; (2.11a)
then,

f=E, a=|E|, (2.11b)

of =E, Bf=pE=B; (2.11c)
all of which is equivalent to the condition

EAB=0, (2.11q)

that is, E and B are parallel fields. This case is im-
portant enough in itself to work out before proceeding to
the general case. Using (2.11b) in (I.2.15), one can
write down immediately

f c YU = ’)/O(E ;‘Z)o 4 ﬁ)’ (2. IZa)

(if) oo =248 Avy=20v, xE, (2. 12b)
where

YoVo=vgAu and ¥p=uvp-u=(1-vE/c) V2 (2.13)

Using (2.6), one obtains from (2.12)

vouu=s (fevgu= yo(Eg-Ei;—Y-gz*F 1): 'yo(ygﬂ-F 1), (2.14a)

v =~ if (if) »vou'—-—%qﬁx(voxﬁ)x%vol. (2.14p)

Equation (2.9) can now be easily expressed as an equa-

tion in relative quantities by multiplying by » and using
(2.14):

pu == 7(1 +-Z-): exp(EXT) Yo(ﬁ E—:EYQ + 1)+ exp(iBAT)¥p¥y, .

(2.15)
The scalar part of (2.15) is the equation

sinh(|E| 7).

E'Vo
- (2.18)

Y = cosh(|E|x7) +
Y
Writing
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v=vitv. where vi=v-+ ﬁﬁ, (2.17a)
one has from the vector part of (2. 16)
: ) VQ M ﬁ o~
vu="7, sinh(| E| A7) + = cosh(| E| ) E, (2.170)
= exp(iBAT) ¥yvy,. (2.17¢)

It will be noted that (2. 17) is simplified by expressing it
in terms of the relative momentum p=myv. Now multi-
plying (2. 10) by # and using (2.12), one obtains

(2 = xg)u = (£ = £g) + (X~ %)

=X%z(exp(EM) - 1)(§—°5-"—°+ E)+—;§°2(exp(is>w) - )%.xB.
(2.18)

The scalar part of {2. 18) gives the functional relation be~
tween the “laboratory time” ¢ and the proper time T:

£ t,,:ﬁ}%—i(sinh(lEl AT) + EC"’“ [cosh(] E| A7) — 1]).
(2.19)

The vector part of (2.18) is a parametric equation for
the orbit x=x(1):

X—x(,:—){%g [cosh(| Efr7) - 1]+E;v°sinh(iE[M)~E
+a’%5(exp(im7) - 1)v,XB.

(2.20)

If E, B#0, the orbit is a spiral with decreasing radius
and increasing pitch as the charge loses energy to the
field.

Now returning to the general case, it is necessary to
express ¢, B, and f in terms of E and B. Squaring
{2.4a), one has

=2 = ? - 2+ 2i0f=(E+iB)=E*-B*+ 2/E - B.

Hence,

o - B2=E*- B? (2.21a)

af=E-B, (2.21h)
Solving for « and B, one gets

2y m2_pe\l/2
a=(l—z—l-——§———£-) > Q, (2.222)
-2 _p2ype\l/e

pos (BB (2.22)
where

l2|?= o+ B%=[(E*- BY)?+ 4(E - B)?]* /2 (2. 22¢)
and the sign of B is determined by the rule

Bz20 if E-B 20. (2.224d)

Equation (2. 4a) can be solved for f by

f=er=8= B g+ p).

So, expressing f in terms of relative vectors e and b,
one has
f=et+ib, {2.23a)

where
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e=(aE+gB)/|z|?, (2.23p)
b=(aB-BE)/|z]|3. (2.23¢)
It is worth noting that, from (2.4¢) or from (2. 23b, ¢),

fz: eZ_bZ___ 1, (2.243.)
e-b=0. (2.24p)
Now, using (2.23a) in (I.2.15) one gets
. X
Srvgu= ’}’o(e cVo +e +Y—°C—E), (2. 25a)
. X
@) 'Uouz')’g(—b v“-b+y°—03). (2. 25b)
And using (2. 26b, c) with (2. 25a,b), one gets
vo,,u:yo<ez_!g,(e><b) +ew_o+bb_-v_o_ba&+e><b>,
c c c c
(2. 26a)

o= = 70(12 = 20+ (o) + €20+ pRT0_ 270+ xp)

(2.26b)

Finally, using (2.6) and (2.'7) and multiplying by «, (2.9)
and (2. 10) can be put in the forms

vu= 'y(l +%)= voutt cosh(@AT) + £ - vou sinh( aAT)
(2.27)
+ vgu cos(BAT) — {if) v,y sIn(BAT),

(x‘xo)u=(t— to) +(X—XD) ::f-you(cisﬂg_;t‘r_):_];)

sinh(ax7) , ,. cos(BAT) -1
+ pgt———— + (if) *v u(—————-——)
e ’ Bx 2.2

— vouu sin(BAT).

Substitution of (2. 25) and (2. 26) into (2. 27) and (2. 28)
followed by separation into scalar and vector parts
yields the complete solutions in relative form. The fact
that the resulting relative formulas appear so much
more complicated than the equivalent proper formulas
(2.9) and (2. 10) merely shows that the relative vectors
E, B, and v, are a poor choice of parameters for the
problem.

Insight which leads to a better choice of relative vec-
tors as parameters can be gained as follows. A boost of
u into

w=WuW=Wu

can be defined by requiring that W boost &= |el-le into
f; that is

f=e+ib= WeW= W= &W2. (2.29)
Solving for W% one finds
. X
wu=W2=fé=|e| +ibé=|e| (1 +%2£) =y,(1+w/c).
(2.30a)
Thus, with the help of (1.23)
X x ‘
w_eXb _ 2EXB (2.30b)

T T L IE YRRl
c e lz|*+E*“+B
and
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Y,=|e| =(1+w?/cH /2, (2.30¢c)
Note that fw==8&u= |f+u1™f -u, hence

f-w=|f-u|'lf-u, (2.31a)
and, more important,

fAw=0. (2.31b)

As noted earlier, the condition (2.31b) implies that the
field F=f(a+iB) will consist of parallel electric and
magnetic fields relative to an observer with proper
velocity w. For this reason, the corresponding relative
vector w is called the relative drift velocity. It is im-
portant to realize that w= |f-u|"(f-u) does not de-
scribe an intrinsic property of the electromagnetic
field; rather, it describes a relation of the observer u«
to the field F=fz.

Now introduce an electromagnetic field
F'=8(a+ip)=E'+iB’, (2.32a)

where a, B and é are defined as before by (2. 22a,b) and
(2.23b). Then, from (2.29) and (2.4) it follows that

F=WF'W. (2.32b)
Hence, from (2.1) it follows that

R=WR'W and R= WR'W (2.33a)
where

R'=exp(F' 1/2). (2.33Db)

Therefore, the equation (2. 3a) for the proper velocity v
of the electron can be written

v =RogR = WR'Wu,WR'W=wo'W, (2.34a)
where

v'=R'vR’ (2. 34p)
and

vy = WugW. (2. 34c¢)

Now v’ is the proper velocity of an electron with initial
velocity vg accelerated by parallel fields E' and B’ rela-
tive to the observer u, so explicit expressions for v'u
=7"(1+2"/c) are known from the special case analyzed
earlier. To get corresponding expressions for vu (2. 34a)
and (2. 30a); thus

vu=A1+v/c)=Wo' Wu=Wo'uW=Wr1+v'/c)W,

the scalar part of which is

r=v7l(1+v -w)/c?], (2. 352)
while the ratio of vector to scalar part is
Tw (vt = Dwa(v! X%
y= Y Wy — Dwx(v/X®) (2. 35b)

1+cw-v' ’

the well-known velocity addition formula. Of course a
similar formula will express v{ in terms of v, and w.
Also in a similar fashion, the general orbit can be found
from the orbit of a particle in parallel fields by a boost
in the direction of the drift velocity or by integrating
(2.35). The formulas are easily worked out, and of
course they will agree with (2. 28), but now the general
nature of the orbit is easily described; it consists of a
tightening spiral in the relative direction & [determined
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by (2. 23b)] drifting with velocity w [given by (2.30b)] in
a direction orthogonal to &.

3. RIGID TEST CHARGE IN A PLANE WAVE FIELD

The equations of motion for a rigid test charge in an
electromagnetic plane wave will now be integrated.

Any plane wave field F = F(x) with proper propagation
vector 2 can be written in the canonical form

F=fz, (3.1a)

where f is a constant bivector and the x-dependence of
F is exhibited explicitly by

z= a, exp(ik - x) + a_exp(- ik - x). (3.1b)

As explained in Ref. 3, o, are the “complex” amplitudes
for right and left circular polarization. Here “complex”
means “having only scalar and pseudoscalar parts,”
i.e.,

a,= [O‘JD + [O‘f]& =p, exp(+193,)
where 6, and p, >0 are scalars. In contrast to the usual
use of complex numbers in electromagnetic theory, the
“unit imaginary” 7, being the unit pseudoscalar, has a
definite geometrical significance. Maxwell’s equation
OF =0 implies, since Ok-x=Ek,

(3.1c)

kf=0, or equivalently, kF=0. (3.1d)
Multiplying by %, one ascertains that

k2=0. (3.1e)
It can be shown further that f must have the form

f=ka=kNa=-ak, (3. 1)

where a is a unit spacelike vector orthogonal to k.
When «, have been specified, a is uniquely determined,
but a rotation of a preserving 2-a=0 can be compen-
sated by an overall phase change of «, and @_(corre-
sponding to a gauge transformation of the electromag-
netic vector potential), so to this extent factorization of
F into f and z is not unique.

Before the spinor Lorentz force R=4)\FR can be
integrated, it is necessary to express F= F(x) as a
function of 7. This can be done by using special proper-
ties of F to find constants of motion. Using (3.1d), one
finds

d .

a—_‘—_(kR)=k =3MeFR=0, (3.2
that is, kR is a constant of motion. So, using the initial
condition R(0) =1, one finds

k=kR=Rk=FkR. (3.3)

The second equality in (3. 3) follows from the first by
reversion: Rk= Rk=R(Rk) =Fk. From (3. 3) it follows that

RkR=E. (3.9)
Therefore, R=R(7) is a family of Lorentz rotations
1eavin~g the lightlike vector . invariant. Multiplying e,
=RY,R by k, Eq. (3.4) gives constants of motion for
the e, :

kEee,=k-v,; (3.5)
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in particular,

k"v:k"vo. (3.6)
Since v=dx/d7, this integrates to
Be(x(T) = xp) =R - uyT. (3.7

This is precisely the relation needed to express the
electromagnetic field acting on the particle as a function
of the proper time. Substituting (3.7) into (3.1b), one
obtains

(3.8)

where wy=k +v, is the frequency of the plane wave rela-
tive to an observer with proper velocity v,, and an over-
all phase §,=*% - x;, has been absorbed into the phaseg of
a, and a_ [or equivalently into the definition of a in
(3.19)].

Now, by (3.1) and (3. 3), the spinor Lorentz force for
a plane wave has the form

dR _

dr

With the initial R(0) =1 and the expression (3.8) for z
=2(7), this integrates immediately to

R=1+ 53Xz, = exp(¥z,/2),

where

z2=2(T) = o, exp(iw,T) + o exp(~ iw,T),

AFR=4$)F=%)z. (3.9

[

(3.1032)

T
z Ef z(‘r)d‘rz—j—- sing wyT( @, expliwy/2) — a_exp(~ iw,7/2)).
0 o
(3.10p)

Hence the expression for the comoving frame as a
function of 7 is

e, =Ry, R=(1+5)2))7, (1~ $Mz,)
=7, + 23(f2,7, — Yuf21) - M5 fz1y, f21,

or, since z,v,=zt7,,

e =%, Mf2)) + ¥, ~ N0z /7, f, (3.11a)
where, recalling (3.1¢) and writing 6=06,+6_,

sin®3w,T

‘_27350_["5 +pZ—2p,p.cos(wyT + 5)].
(3.11b)

Notice that in (3.12) — 3f¥, f=3f(= ¥, +7 %) =f 7.,

which is proportional to the component of 7, in the

f plane.

01=%|z (%=

According to (3. 11a), the equation for the proper
velocity is

dx _

vo+ MJ2y) vy + X204 ff - v, (3.12)

which integrates to a parametric equation for the parti-
cle history

x(T) m~ Xo=UgT + A[fzz] Vo + hzezf_‘f“vo, (3. 133.)
where
T z (a,ta) , (a,-a)
= — + +* " + + -
2y ‘/0‘ zq4(7)d7 :0-% wg P (3.13p)
and
T .
0,= f 91(7)d7=—11((p§+pf+2p,p-)w
0 Wy @y
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sin(2w,7 + 6)

- PP, +(p+p*+p,p_cosd)T
ZwO
(3.13¢)
3 .
+——sind).
2w,

This completes the explicit solution of a rigid point
charge in a plane wave. If desired, the equations can be
put in relative form by the method illustrated in the last
section.

4. RIGID TEST CHARGE IN A COULOMB FIELD

The spinor Lorentz force will now be integrated to
describe the motion of a test charge e in the Coulomb
field of a “fixed nucleus” with charge — Ze. Let u be the
constant proper velocity of the nucleus. In terms of
relative variables the Coulomb field is

k

AF= —gE-——k-lx—lz— le|’ (4.1a)
where
k=Ze)4An=2Ze%/4nmcl. (4. 1b)

In terms of proper variables the Coulomb field is
xAu __ ~ku ) _ k
XA ul® —D(Ix/\ul ‘”"D(m\ u|>’
(4.1¢)

where, of course, x=x(7) is the position of the test
particle at time 7 and the origin x=0 has been located
at some point on the history of the nucleus.

AF=-F

Before the spinor equation R=%)FR can be integrated,
it is necessary to express F as a parametric function of
the particle history. This can be done by reexpressing
symmetry properties of F in terms of constants of mo-
tion. The constants of motion can be found by multiplying
F by the available vectors x, u#, v and using the Lorentz
force,.

“Dotting” (4. 1c) by u, one finds, with the help of

(1.1.5),
E [k
[x Aul —D<Ix/\ul>’

Ay o F=
since u-OlxAult=c"3,lx1"'=0. So, dotting the
Lorentz force 7= AF -v by u, one finds

o) et = g e F oy = 1y » kR_\_df k
g =uwo=2u-F.o=v D(lx/\m)‘d'r\lx/\m)'

Hence,
W=u-v—k/|xAu|=

(O = un -0) (4.2)

y—k/|x| (4.3

is a constant of motion. The sum of particle kinetic and
potential energies is E=mcHW-1)=mc¥y— 1) - Ze?/
4arix|.

From (4.1c) it follows that the Coulomb field (in fact
any central field) has the properties

FAu=0,
FAx=0.

(4. 4a)
(4. 4b)
By virtue of (I.1.8), it follows that (FA ) cv=Fu-v
—(F-v) Au=0, which, on substituting \F -v="1v, gives

d%(v/\u):thr»u. (4.5a)
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In terms of relative variables, this is just the usual
equation for an electric force on a particle, i.e.,

d _am_ €

(W =c AE=_E. (4.5b)
Now applying (4. 4b) to (4.5a), one finds

d

E(v/\u/\x)~ (4.6)
hence the dual of the trivector v Au Ax,

I=iv Aulx, 4.7

is also a constant of motion. Using the general duality
relation (iT) +x=iT A %, one obtains immediately from
(4.7)

lex=l-u=1-v=0. (4.8)

In terms of the proper vector [, one can define a relative
vector 1= A u which is obviously also a constant of mo-
tion. From (4.8) and (4.7)

1=l Au=lu==ilvAxAw) cu=—ilv A x),. (4.9a)
Since

vx = (vu)(ux) = (1 +v/c)(ct - X)

=¢ct-x) - ( )+7(vt x)——vAx,
so [v Axlg=c'vx Av=cvixx v, and (4.9a) yields

ax _XXp

1= dat  mc

XXy=xX—— (4. 9b)

¥
¢

Thus 1 is the usual (relative) angular momentum per unit
me.

The constants of motion have been found; the problem
now is to use them effectively. From (4. 9b) one finds

lev=1.x=0, (4.10)

which says that the relative motion is in a plane
orthogonal to 1. The unit bivector i1 is the generator of
rotations in that plane. Hence one can write
=aexp(ilo), (4.11a)
where a+°1=0 and ©(7) is the angle of rotation of a fixed
unit vector a into the direction 1. The requirement 6
=d©/dT > 0 entails that the rotation has the same
“sense” as the particle motion. The sense of the rotation
is described by the vector

i
75 == =bexp(ilo), (4.11b)
where
b=ail=a-Gl)=iaAl=1xa. (4.11¢)

Thus, the vectors a, b, i form a right-handed ortho-
normal frame. So do the vectors x, dX/dO, 1, since

~ -~

=a exp(i16)b exp(i10) = ab =il =ik xX

15 (4.11d)

d

Xie
Conservation of 1 implies that the direction and the mag-
nitude of 1 are conserved separately. The implication of
the directional conservation has been expressed by
(4.11). The implication of the magnitude conservation
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can be obtained by substituting

_Yg_:%:%daxze(xd;g*;lx Z—’é) (4.12)
into (4.9b) and using (4.11d); thus

1= |x|*6xx X~ | (3
or

[1] = |x]26. (4.13)

Now, with (4.13) and (4. 11a), the Coulomb field

(4.1a) can be put in the simple parametric form

AF = - kxO =~ xa exp(il0)© (4.14a)
where

k=k/|1]| = Ze?/amme|1]. (4.14b)

Hence on changing variables from 7 to ©, the spinor
equation R = 3AFR assumes the simple form

dR__I_(}ER:_E

6-"3 52 exp({1O)R (4.15)

Of course (4.14) and (4. 15) assume i1] #0; the case 1
=0 is easily integrated separately, since then the di-
rection of the field is a constant of motion.

To solve (4.15), guess that the solution has the general

form
R=exp(- BO/2) exp(—- AO/2)R, (4.16a)
where B, A, and R, are independent of ©, and, to satisfy
the conditions that R be even and RR=1, B and A must
be proper bivectors and RyR;=1. It may be noted that
no generality is gained by adding “phases” to the angles
in (4.16a) since they can be “absorbed” in the definitions
of the constants 4, B, R, . Substituting (4. 16a) into
(4.15) one obtains conditions on A and B; thus
dR +

- ka exp(ilO) = 25 =~ B~ exp(~ B6/2)A exp(B6/2)

=-B-~A,-A_exp(BO),

where to carry out the last step, A has been expressed
as the sum of a part A, which commutes with B and a
part A_ which anticommutes with B. Equating independent
parts of the equation, one finds

B=il, (4.16b)

(4.16¢)

Hence (4. 16a) subject to (4. 16b, ¢) is a general solution
of (4.15). The form of this solution is peculiar to the
Coulomb field and does not apply to any other central
field.

A=rka-il.

The “initial value” R, of the Coulomb spinov (4.16a)
can be written Ry= L U, where L, determines a boost and
U, a spatial rotation. By an appropriate choice of the
initial conditions for the comoving frame, the spinor U,
can be set equal to unity. The spinor L, is determined
from the velocity v, at ©=0 by the equation

vo=RguRy= LguL,= L%
or
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vou:Lg=yo<1 +%> where ¥,=(1-v2/c?)"*/2, (4.17)

[The use of the symbol 7%, in (4.17) should not be con-
fused with the use of the same symbol to represent a
vector elsewhere in this paper.] According to (4.10) 1-v,
=0, although it is not necessary, it is convenient to re-
quire also a vy =X, Vo= 0; so by (4. 11)

Vo= lVolb- (4.18)

This eliminates previous arbitrariness in the choice of
the direction a and the zero for ©. The constants of mo-
tion |1| and W can be expressed in terms of the initial
values |v,yl and |X,} and vice versa. Because of (4.18),
(4.9) and (4.11) imply

1] = || 1520 = g %20 (4.180)
Using this in (4. 3) one obtains

Wzyo(l—x%)= Y- k(y2 - 1)/ (4.19Db)
Solving (4. 19b) for lv,!| and ¥, one obtains

vl _ s WP .90

YD:W:t K(lei’KKz—l)llz, (4.20b)

The physical roots must, of course, satisfy the condi-
tion 0 < |vyl <c.

The Coulomb spinor (4.16a) gives immediately the
explicit expression for the particle proper velocity

v =RuR = exp(— BO/2) exp(~ AB/2)v, exp(A0/2) exp(BO/2).
(4. 21)

Three classes of motion can be distinguished: when

A% is zero, positive or negative. If A%=0 then expzA©
=1+ 340 and the motion is most easily analyzed by sub-
stituting this in (4.21). If A%#0 the motion is most
easily analyzed by decomposing v, info a component

v AA

Von="gr (4.22a)
in the A plane and a component

wzv"//}{m =—”°'f4if)iA (4.22b)
orthogonal to the A plane, so (4.21) becomes

v=exp(— BO/2)(vg, + vy, exp(AO)) exp(BO/2).  (4.23)

From (4. 16¢) one finds A%=«*—1. If ¥*>1, then expAO
=cosh|A|©6+|A|""A sinh|A|© where 4] =(k?-1)"/3;
this is characteristic of the “scattering states” of the
particle. If k¥ <1, then

exp(A0) =cos|A|0+Asin|Ale, (4.24)
where
|A|=(1- k)2 and A=|A|-'A. (4.25)

This is a necessary (but not sufficient) condition for
“bound states” of the particle. In the following, this
case will be studied in more detail.

To find an expression for the relative velocity of the
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particle, substitute (4.24) into (4. 23) and note that by
(4. 16b) that » commutes with B, so

vu=Y1+v/c)=exp(~ Be/Z)(v0 +p,cos|A|©
v A (4.26)

+
Al

sin|A | 6>u exp(— BG/2).

The terms involving v, can be put in relative form with
the help of the general formula (I.2. 15); thus, since A
= ka—~ il and vou=¥o(1 +blv,|/c) where ab=41, one
obtains

a-v -
Vo Au=—A +vgu=— vl 0+ xa - 150
0 (] s P

I

where in the last step (4. 19b) and (4.20b) were used to
convert initial values to constants of motion. The two
signs in (4. 27) correspond to an arbitrariness in the
choice of orientation of a and b. It is convenient to
choose the positive sign. Repeating the procedure which
lead to (4. 27) with iA=1+ika instead of A, one obtains

| (4.27)
Vo)a ;t(W"" 'AIZ)I/Za,

(lA) Vo= 706.+2Kab'|—‘;ﬂ)
_'yo<1- K IVol)l wi.

From (4. 27) one gets
AA -vg)u _ (WE— 1A |1H)L/2
- A2~ A2

2 _ 2)1/2
= IJIAIZH (k+b)

(4. 28)

Vo U= (ka-1dl)a

(4.29)

and from (4. 28)

- iA(‘LA) Vo __
Vo= _ IAIZ |A[2 a+l’€a)1——z(1+Kb)
(4.30)
Substituting (4. 27, 29, 30) into (4. 36), one bas
7(1+ ) exp(- Be/z)( (1+ «b)
2yl/2
+(—Wf_—I|AA—|L—l—(x+b) cos|A|o (4.31)
2172
+(—u£2°—|1|4‘é||—2——-asin|A|e)exp(Be/2).
The scalar part of (4.31) is
7=1741T"’(W+ k(W= |A]|®)Y%cos|A|O), (4.32)

while the vector part of (4.31) is

%_YV (———2—(KW+(W2 |A[2Y2cos|A|0)
(4.33)
1/2
(We- 1A1977 sin|Ale)exp(BO).

ta Al

This is the desired equation for the relative velocity.

An equation for the orbit of the particle can be ob-
tained immediately from the radial component of (4. 33)
without integration. Using (4.11) and (4. 13) in (4. 12),
one gets
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(4.39)

_| ‘QXI 4 <l,1‘|>)exp(B6)

Equating (4. 34) to (4. 33),
component

LI 1A}2
x|

This is the well-known equation for a precessing ellipse
derived long ago by Sommerfeld.

one obtains from the radial

=kW+ (W= |A|)/2c0s|A]0. (4. 35)

When k<1, the bivector - A=— ka+il can be obtained
from B=il by a boost. Thus, as in (2. 29) and (2. 30)

-A=—ra+il=|A|KidK= |A| K%, (4.36)
So

Ki=|A|"Ad= |A| (1 + kail)
or, by (4.11¢),

K2=]A|Y(1+ b). (4.37)

Notice that K produces a boost in the direction of the
initial velocity vo= lvylb. Indeed, from (4.34) it is
obvious that the orbit is circular if W= {A|2, and ac-
cording to (4.27) this is equivalent to the condition «
= |vyl/c, which implies that K is equal to the initial
boost Ly in (4.17). Using (4. 36) the Coulomb spinor,
(4. 16a) can be put in the form

R=exp(- BO/2)K exp(B|A|0/2)KL,, (4. 38)

which, for circular motion, reduces to
R=exp(- BO/2)K exp(B|A|6/2) =K’ exp(- (1- |A|)BO/2),
(4.39)
where
K'=exp(— BO/2)K exp(BO/2).

The right side of (4. 34) displays R factored into a boost
by K’ preceded by a spatial rotation through an angle
(1-1A1), which evaluated for a period gives the Thomas
precession immediately. The Thomas precession for
arbitrary angular momentum can be obtained algebrai-
cally by factoring exp(— 3B6) exp(— $40) into a boost
preceded by a spatial rotation.
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We consider the “missing label”” problem for basis vectors of SU(3) representations in a basis
corresponding to the group reduction SU(3) D 0(3) D 0(2). We prove that only two independent

O (3) scalars exist in the enveloping algebra of S U(3), in addition to the obvious ones, namely the
angular momentum L2 and the two SU(3) Casimir operators C® and C®. Any one of these two
operators (of third and fourth order in the generators) can be added to C®, C®, L2 and L, to
form a complete set of commuting operators. The eigenvalues of the third and fourth order scalars
X® and X are calculated analytically or numerically for many cases of physical interest. The
methods developed in this article can be used to resolve a missing label problem for any semisimple

group G, when reduced to any semisimple subgroup H.

1. INTRODUCTION

The general problem that we touch upon in this arti-
cle is that of providing a complete labeling for the states
transforming under an irreducible representation of a
given Lie group G. In a certain sense this problem has
been completely solved for the classical semisimple
groups,1 corresponding to the Cartan algebras 4,, B,
C,, and D,. Indeed the Gel’fand— Tseitlin patterns® pro-
vide us precisely with such a set of labels, and the cor~
responding “canonical basis” consists of a complete non-
degenerate set of orthonormal basis functions. The basis
functions are the common set of eigenfunctions of a com-
plete set of commuting operators, consisting of the
Casimir operators of the group G and of all the Casimir
operators of a “canonical” chain of subgroups of G.
Thus, e.g., for the group SU(n) the canonical chain is

SU(n) > S[UM - 1) xU(1)]> S[UH - 2) xU(1) X U1)]
oD S[U)Yx- - - xUL) xU(1)] 1)

so that the complete set of commuting operators con-
sists of all the Casimir operators of SU(n), SU(n - 1),
...,SU(2) and of the (#~ 1) linear operators (the .
Cartan subalgebra), corresponding to the U(1) sub-
groups. Similarly, the problem is solved for the ortho-
gonal and symplectic groups (and also for some of the
noncompact groups, corresponding to the same
algebras®).

Unfortunately, in physics one is often interested in
other operators, which may correspond to subgroups,
not figuring in the canonical reduction, or may lie in
the enveloping algebra of the Lie algebra of G, without
being Casimir operators of any subgroup of G. Hence it
is important to study other bases and indeed to perform
a systematic study of possible bases for representations
of various Lie groups.

In this article we restrict ourself to a very simple
case, which is, however, of considerable physical in-
terest, namely the group SU(3). The standard applica-
tion of SU(3) in particle physics, namely the “eightfold
way”? does indeed make use of the canonical chain of
subgroups SU(3) > S[U(2) xU(1)]> S{U(1) xU(1)]. However,
in nuclear physics®~" and more generally in group the-
oretical treatments of the many-body problem, ® the
quantity of prime interest is angular momentum, asso-
ciated with the group O(3) that is imbedded into SU(3) in
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an irreducible manner [this O(3) is the intersection of
SU(3) and SL(3, R)]. The corresponding chain of sub-
groups is

SU(3) > 0(3) > 0(2). (2)

Basis functions of SU(3), corresponding to the reduc-
tion (2) are eigenfunctions of the second C?’ and third
C™® order Casimir operators of SU(3) and of the angular
momentum operators L% and L;. There is one label
missing to characterize the states completely and indeed
there can be more than one state, characterized by given
0(3) quantum numbers (I, m) within a given representa-
tion (B, k,) of SU(3). Several different methods have
been proposed to resolve this degeneracy problem, and
they can be divided into two classes.

The first type of solution leads to a simple labeling of
the states (by integers), but to nonorthogonal basis func-
tions that are not eigenfunctions of any complete set of
commuting operators. >%? The other type of solution of
the degeneracy problem for O(3) states in SU(3) rep-
resentations leads to orthonormal states, that are
eigenfunctions of C'*¥, C*®| L? L, and an additional
Hermitian operator X in the enveloping algebra of
SU(3). 51 The eigenvalues of X provide the missing
label for the state vectors; they are, however, not in-
teger numbers and must in general be obtained by solv-
ing certain algebraic equations. What is more, Racah
has proven"’ that it is not possible to construct any
operator in the enveloping algebra of SU(3) that would
resolve this missing label problem and have integer
eigenvalues.

The purpose of this article is to investigate further
the second of the above approaches, that is, in general
to study all possible complete sets of commuting opera-
tors, the eigenfunctions of which will provide an ortho-
normal basis for the representations of the group G [in
this case G=SU(3)]. Investigations along these lines
have been carried out,!! . g., for the rotation groups
0O(3) and O(4), the Euclidean groups E(2) and E(3), and
the Lorentz groups O(2,1) and O(3,1). Each nonequiv-
alent complete set of commuting operators (consisting
of operators from the enveloping algebra of the given
algebra that may or may not be Casimir operators of
subalgebras, and possibly of some further reflection
type operators) provides us with a different set of basis
functions. In particular the “nonsubgroup” type opera-
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tors lead to the appearance of many new types of special
functions in group theoretical studies'!? (e. g., Lamé
and Heun functions).

In this article we consider the reduction of SU(3) to
O(3) as in Eq. (2) and study the complete set of commut-
ing operators

c®,c® L% L,, and X, (3)

where X is the additional “degeneracy lifting” operator,
supplying the label missing in the reduction (2). In order
to commute with L2 and L;, the operator X must be an
O(3) scalar. We shall search for X in the enveloping
algebra of SU(3)—hence it will automatically commute
with the SU(3) Casimir operators C? and Cc®,

Our main result is that we have shown that only a very
small number of independent O(3) scalars X exists in
the enveloping algebra of SU(3). Indeed only one third
order X and one fourth order X’ independent opera-
tor of this type can be found. All other O(3) scalars can
then be written as polynomials in ¢?’, ¢®’ 12 x®
and X¥ (this result was probably well known, e.g., to
Racah, but we are not aware of any general proof).

In Sec. 2 we show for an arbitrary connected Lie
group G and an arbitrary (compact or semisimple) Lie
subgroup HC G that the number of independent scalars
with respect to H in the enveloping algebra of G is
finite. We then identify G with SU(3), H with O(3), and
derive a generating function for the number of O(3)
scalars of each order. Finally we present the indepen-
dent O(3) scalars explicitly. At this stage it is appropri-
ate to stress that the method presented for deriving the
generating function for the number of subgroup scalars
of a definite order in the enveloping algebra of a given
group is quite general and can be applied to many cases
of physical interest.

In Sec. 3 we discuss the operator X® in detail,
derive formulas for its eigenvalues for the cases when
the O(3) representation J occurs at most twice in the
representation (k, k,). We present a numeric method,
making use of the Gel’fand—Tseitlin states, for cal-
culating the X* and X'¥ eigenvalues for arbitrary
representations., The method, which turns out to be
quite simple, is then applied to calculate the eigenvalues
on a computer for a large number of representations.
The results are presented in Tables I and I, A different
method for calculating the eigenvalues of X‘* was quite
recently presented by Hughes. 13 For those four repre-
sentations that he considered our results coincide (up to
a normalization factor equal to 2V8). His operator @'
differs from X by an algebraic combination of the
lower order O(3) scalar operators so that the eigenval-
ues cannot be easily compared. Still another method for
calculating these eigenvalues was essentially contained
in the by now classical articles of Bargmann and
Moshinsky. ¢

2. SUBGROUP INVARIANTS IN THE ENVELOPING
ALGEBRA OF THE GROUP

A. Proof that the algebra of invariants is finitely
generated

Let H be a connected Lie group, coinpact or semisim-
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ple, with Lie algebra // and let the matrices T(k), h<H,
be an nXn matrix representation of H. The mapping
x— T(h)x, where x=(xy,...,x,) is a column vector, in-
duces a representation of H in the space P[x] of all
polynomials in the indeterminants x,...,x, over the
complex field. Clearly, the subspaces P,[x] consisting
of homogeneous polynomials of degree m in the x, are
invariant under the group action, m=0,1,2,-- -,

An invayiant in P[X] is a polynomial p(x) which is
fixed under the group action: p(T(g)x)=p(x) for all k< H.
Clearly, the invariants in P[x] form an associative
algebra I[x]. In particular a,p,(X) + a,p,(x) € I[x] and
p1(X)py(x) € I[x] for any invariants p,, p, € /[x] and con-
stants a,,a,c C. Furthermore, I[x]=3,.,I,[x], where
In[x]=1[x] N P,[x].

A fundamental fact about I[x] is that it is finitely gen-
erated. That is, there exists a finite set {;,...,%, of
nonconstant invariants such that for every p(x) € I[x] it
is possible to find a polynomial 2(y,,...,y,) with the
property p(x)=h(iy(%),...,%,(X)). Clearly one can choose
%4y...,% as homogeneous polynomials in the x;. Fur-
thermore, if one of the generators, say ¢,, can be ex-
pressed as a polynomial in the remaining generators,
then we can remove it and 4,...,¢,; will still generate
I[x].

Proceeding in this way, we eventually obtain a
minimal set of nonconstant homogeneous polynomial in-
variants #{,...,i% which generate J[x]. Such a minimal
generating set for I[x] is called an integrity basis. A
proof of the existence of a finite integrity basis can be
obtained by a slight modification of that given by Weyl, !
and will not be repeated here,

Let G be a connected Lie group containing H as a Lie
subgroup. Then /4 is a subalgebra of the Lie algebra g
of G. Let // be the universal enveloping algebra' of (.

If Xy,...,X, is a basis for ¢, it follows from the
Poincaré— Birkhoff—Witt (PBW) theorem® that as a vec-
tor space (/ *3p0®(/n, Where (/,=C, [[{=(, and {/, is
the space of all symmetric polynomials p(X,,...,X,) in
the Lie algebra generators which are homogeneous of
degree m (see Ref. 1). Furthermore, H {and /) act on
{/ by means of the adjoint representation, and the sub-
spaces [/, are invariant under this action. In this paper
we are interested in computing the elements in // which
are fixed under the adjoint action of H. If we denote the
set of all such elements by ¢, we see easily that ¢ is an
associative algebra and ¢ =3._®¢,, where ¢,C{/,.

Note that as a vector space {/ is isomorphic to P[x].
Indeed, by the PBW theorem every p & (/ can be written
uniquely as p=3 1 PnlXi,. .., X,), Pn<El/n- Moreover,
the assignment p,(X,,...,X,) =P, (xy,...,x,) yields an
isomorphism of {/,, and P,[x]. Finally, if we define the
n Xn matrix representation T of H to be that induced by
the adjoint action of H on the basis X,,...,X, of g, we
see that there is a one-to-one correspondence between
invariants in // and polynomial invariants in P[x].

We can define the notion of an integrity basis for the
invariants ¢ in // in exact analogy with the definition
for the invariants I[x] in P[X]. An integvity basis for ¢
is a finite set {,...,4,} such that: (1) Each ;e ¢ is
homogeneous of degree m; > 1 and symmetric in
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Xy...,X,, i.e, eachi;ed,, (2) Every ic ¢ can be
expressed as a polynomial in4,,...,7,. (Here we must
take into account the fact that the X, hence the i; may
not commute. ) (3) No one of the 7, may be expressed as
a polynomial in the remaining ¢;, j+k.

Due to the noncommutativity of the X; it is not im-
mediately obvious that ¢ has a finite integrity basis.
However, the following holds.

Theovem: If i4(x), ... ,4,(X) is an integrity basis of
homogeneous polynomials for I(x), then
13Xy, ., X)), e, 5Ky, .., X)) contains an integrity
basis for ¢. Here, 7;(X;,...,X,) is the homogeneous
symmetric polynomial in // corresponding to
ij(‘Xi’ LI 7Xn)~

Proof:. We will show that any C € ¢ can be expressed
as a polynomial in iy, ...,%,. Without loss of generality
we can assume C=C,, € ¢,. The proof now proceeds by
induction on m. The case m =0 is obvious. Suppose C,,
can be expressed as a polynomial in é,,...,%, for any
m <mg and consider some C, € ¢, . Since {i;®)} is an
integrity basis for I[x], if follows that the polynomial
Cnyx) €9 mo[x] can be expressed as a polynomial in the
1;(x).

Suppose for example that Cmo(x) =1, (x)iy(x) where
i1 € I, [%], i€ I,,[x], and mg=m,+m, Now consider the
elements CmO(Xj) and 7(X;){,(X,) in {/. We have CmO(Xj)
€ 9, while in general
mg

§3X X ) C maeeﬂ,,,.

However, it is easy to see that the component of i,i; in
-Q"‘O is just CmO(Xj). Thus,
mg-1

Cy ) = 11X )i (X)) = 23 CplX,).

Since each C,(X;) for m <m can be expressed as a
polynomial in the invariants %,,...,,, the induction step
is complete. Our example easily extends to the general
case. QED

In general 7,(X;), .. .,5(X) is not an integrity basis
for ¢ but rather a subset i{,...,7; is an integrity basis.
This is because there may exist algebraic relations be-
tween #4(X;),...,%,(X;) in ¢ which have no counterpart in
I(x). Such relations are consequences of the commuta-
tion relations of (;. Indeed, if #;(X;) and 7,(X;) do not
commute, then i{X;)=[i;(X,),#,(X,)] is also an invariant
and the relation ¢=4;i, — i5{; is not obtainable from I(x).

In conclusion: To find an integrity basis for ¢ we first
find an integrity basis 4,,...,7, for I(x). Then, forming
all possible commutators [i,(X,),1,(X,)], we determine a
minimal subset of the i, which are independent.

B. Generating function for the number of O(3) invariants
of arbitrary finite order in the enveloping algebra of SU(3)

In this paper we are concerned with the example
G=SU(3), H=0(3).

Under the adjoint representation of O(3) the eight-
dimensional Lie algebra SU(3) splits into a direct sum
of the irreducible three- and five-dimensional represen-
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tations of O(3). The elements L;, Ty, 1<4,j<3 forma
basis for SU(3) where the vector L; transforms accord-
ing to the three-dimensional representation D; and the
symmetric traceless tensor T,; transforms according
to the five-dimensional representation D, of O(3).

In more physical terms we can identify L ={L;} and
T={T,,} with the angular momentum and quadrupole
moment operators, putting

Lf=el'lkxlpk7 (4)
Tio=3(Dsbr+%%) — %(52 +§2)51k,

where x; are the coordinates of a particle and p;
=-198/0x; its momentum, These operators satisfy the
SU(3) commutation relations

(Lj, Ly)=tegLy,
(L, Ter) = t€5amTim + €5 0m T bms (5)
[Tyns Timl= %i(bjlekmn + 81 m€ntn + Ot€imn + OamEiin) Ln-

In the defining representation of SU(3) these genera-
tors can be identified as follows:

o1 , fo-1 0
Li=—{101}), 2,=—l1 0 -1},
VZ\p 1 o 2\ 1 o
10 0
L3=00 0,
00 -1
10 3 -1 0 -3
T11=§ 02 0, T22=E 02 0,
30 -1 -3 0 -1
Lt 00
T33=§0—20’ . (6)
0 01
ioo-1> , fo-10
T12—"'00 0, T23=——‘1 01,
2\1 0 o 2V2\g _1 0o
L [0t o
Ty=—=(1 0 -1
TE\g |1 o

By our theorem, to find an O(3) integrity basis for the
enveloping algebra of SU(3) it is enough to find an in-
tegrity basis for the space of all polynomials in the
eight indeterminants 1;, #;, 1<4i,j, k<3, where {;,=1,;
and #;;=0. Here the /; transform under O(3) according
to Dy and the ¢,;, according to D,. In this case it is clear
that the subspace P,,, of polynomials homogeneous of
degree n in the I, and degree m in the f;, is invariant
under the group action. Thus we can classify polynomial
invariants C"»™ in terms of their degrees of homo-
geneity n, m.

It is very easy to construct examples of polynomial
invariants, e.g.,

CHV=11,, C*V=1t,1,
CUP =t b, COV =ttt ™
c(2,2) - litiftjklki c(373) = eabctbktcltﬂllﬂlklh'

The basic problem is to find all such independent in-
variants, or more specifically, to construct an in-
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tegrity basis. We will show below that the above list of
six invariants is in fact an integrity basis and thus
solve our problem.

First of all it is useful to apply Lie’s theory of in-
variants to this problem, e.g., Ref. 15. It follows
easily from this theory that the action of the three-
dimensional algebra so(3) on eight-parameter functions
F(l;,t;,) implies the existence of exactly five functional-
ly independent invariants k,(;, ¢;,), a=1,...,5. By this
we mean that there exist five invariant functions analy-
tic (but not necessarily polynomials) in the variables
l;, t;, such that every other invariant is an analytic func-
tion of these five. Furthermore, no one of the %, can be
expressed as an analytic function of the remaining four.

By inspection one can show that the invariants C‘Z'O’,
CAb o 3 2 5re functionally independent, so
that all other invariants must be analytic functions of
these five, However, the remaining invariants would
have to be expressible as polynomials in these five in-
variants for them to be an integrity basis. C‘*% is not
so expressible. Indeed a direct computation yields

[C(3,3)]2
- c(2, O)C(Z,i)c(o, 3)C(2,2) ¥ _é_c(Z. O)C(O,Z)[C(Z,Z)]Z

- i,c(z. 0)[C(0,2)]2[C(2,1)]2 - _é_[C(Z,O)]Ii[C(O.ﬂ)]Z
- %[C(Z'0)]20(0'2)0(2'1)C(0'3)+%C(0'2)[C(2'1)]2C(2'2)
- %[C(Z,l)]Bc(O.B) _ [C(Z,Z)]3 (8)

i.e., [C®®7T is a polynomial in the first five invariants
but €3 ig not.

To show explicitly that we have found an integrity
basis we generalize a technique found in Ref. 14, p. 181,
and Ref. 16, to derive a generating function for the
number of invariants of rank (r, m). For this we recall
that the irreducible representations of O(3) can be
denoted by D;, =0,1,2,°-+, and that the character
x;(0) of D; corresponding to a rotation through the
angle 6 is

%(0)= 2 exp(ko), ©)

By choosing a weight basis it is straightforward to
check that the character x,, ,,(6) of O(3) acting on the sub-
space P, , is

Xnm(B) = 20

Gyaney

exp[ifla~c+2d +e — g - 2h)], (10)

where the sum is taken over all nonnegative integers
a,...,hsuchthat a+b+c=n, d+e+f+g+h=m. 1t fol-
lows from this that

Flexp(i6), P, D]
=[(1 - exp(i9)P)(1 - P)(1 - exp(~i6)P)(1 - exp(2i8)D)

X (1 — exp(i6)D)(1 - D)(1 - exp(- i6)D)(1 — exp(— 2:6)D)]™

Y X, m(O) P"D™, (11)

ny m=0

i.e., Flexp(:6), P, D] is a generating function for the
character y,, »(6). Note that the number of invariants of
degree (n,m) is just the multiplicity of the identity rep-

J. Math. Phys., Vol. 15, No. 10, October 1974

1790

resentation Dy of O(3) in P,
gonality relations

me Thus, using the ortho-

1 2r _ 6
; A‘ Xn(e)Xm(e) Sln2§ dé= 6nms (12)

we find
1 (% .8 . S
—f sin’< F(exp(i9), P,D)dé= 2; N, ,.P"D",  (13)
T 0 2 ny m=0
where the integer N, , is the number of linearly inde-
pendent O(3) invariants of rank (n,m). Setting exp(i6)
=}, we can regard the left-hand side as a contour in-
tegral about a unit circle in the complex X plane,
Evaluating the integral by residues and employing some
tedious algebra, we finally obtain

1+P3p3 - .
A= P)= D) - DVA= PDIT=PID) i VD™

(14)

It is illuminating to compare this expression with our
earlier results. Since C»0, C@D 2 O3 4pq
C®? are functionally independent, we can construct in-
variants of the form [CZ O P[CRVP[C D [c @I}
X[C®?)e. where a,...,e run over the nonnegative in-
tegers and the set of all such invariants is linearly in-
dependent. If these were all possible invariants, then
the generating function (14) would be

1
(1-P2)(1 - D*%(1 - D3)(1 - P2D)(1 - P2D?) °

However, the actual N, ,, is in general larger than that
predicted by (15) which shows that there are additional
invariants. Indeed N, ;=1, while it is impossible to
construct a (3, 3) invariant out of C*% ..., C%?, Thus,
there must exist a new (3, 3) invariant. This new in-
variant is clearly C*®, We can now obtain new in-
variants of the form C*¥[Cc®Op | [C%M]e, This
accounts for all terms in (14) and completely solves the
problem of finding all O(3) invariants. (It is not possible
to obtain independent invariants by taking higher power
of C%*3 pecause [C* P ] can be expressed as a poly-
nomial in C'%9 ..,  C%2))

(15)

C. The 0(3) invariants and the SU(3) D 0(3) reduction

It was shown above that there are at most six alge-
braicly independent O(3) scalars in the enveloping
algebra of SU(3). They can easily be expressed in terms
of the generators L; and T, of Eqs. (4)—(6) and indeed
they are given by Eq. (7) with ; and £,; replaced by the
operators L; and T};.

The two Casimir operators!’ C’ and C® of SU(3)
are, of course, also O(3) scalars and must be contained
among those found. Indeed, it is easy to check that we
have

CP = AL +2T% = G)(LiL; +2T Ty, (16)
const C®=LTL -3 TTT=L,T;,L,~ $TuTsiTs;.

It is also easy to verify that the operator
X® - €abc Toa T ceTorLaL oLy

can be expressed in terms of the commutator of the two
operators
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X(3)=LaTabLb and X(4):L4TabTbch 1)

and lower order terms.

In addition to the angular momentum L? and the two
Casimir operators C*’ and C*® we thus only have two
new independent O(3) invariants X® and X'¥ [see (17)].

Note that the scalars of this section do not quite
coincide with those listed in Eq. (7) because they are
not all symmetrized. However, they do agree in the
highest order terms and they provide an alternative
integrity basis which is computationally easier to deal
with,

Let us note here that the operator X‘® is equivalent
to an operator used in a similar context by Bargmann
and Moshinsky.

Returning to the problem of representations in the
SU(3)D O(2) basis, we see that the basis functions of
irreducible representations of SU(3) can be chosen to be
eigenstates of the operators C®’, C'® L? L, andX,
where X is in principle an arbitrary function of the
operators (17).

If we make the natural restriction that X be an opera-
tor of a definite order in the enveloping algebra of SU(3),
we find that only one third-order and one fourth-order
are available. Some physical implications of this fact
will be discussed in the final section.

In conclusion, the operators L2, C?, ¢® X and
X form an integrity basis for the O(3) scalars in the
enveloping algebra of SU(3).

3. SPECTRUM OF THE O(3)—SCALAR OPERATORS

The purpose of this section is to calculate the spec-
trum of the third and fourth order operators X ‘) and
X and to demonstrate some of their general proper-
ties. Indeed, for any practical use of the present state
labeling method it is essential to know the spectrum of
the operators for all SU(3) representations likely to
appear in applications.

The SU(3) D O(3) case is only the simplest of many
group—subgroup pairs of physical interest where some
labels are missing. Higher order operators can resolve
these labeling problems not only in principle, but in our
opinion are the most practical way to approach the prob-
lem. It is therefore natural to perform the (computer)
calculations of the spectra in a way which is not limited
to the SU(3)> O(3) case but can readily be extended to
cases like SU(4)D SU(2) XSU(2), G,> O(3), and others.
The basis we use for deriving the secular equations is
that of Gel’fand and Tseitlin, 2 with U(3) generators E;,
satisfying the commutation relations

[Eij, Epl = 8;4E 1 ~ 8;,Ey,, (18)

where J;, is the Kronecker delta. An explicit form of the
matrix elements of the U(3) generators can be found in
the second example of Ref. 18 [Eq. (22)]; correspon-

dence between the notations in the present paper and Ref.

18 is established by putting E;,=C* and m;,=h;,, where
m;, are the elements of each pattern-basis vector,

It is convenient to replace the generators L;, L,, and
L4 of (6) by equivalent ones:
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Li=Ey+Ey;, Ly=E-E;;, L_=Ey+Eyy, (19)
whose commutations relations
[Li,L4)=L,, [Lo,Li}=Ly, [Lo,Lyl=-L, (20)

follow from (18). The generators (19) can be realized
as 3 X3 matrices:

010 10 O 000
Li=(o0 01}, Ly={0 0 0} L,={100]) (21)
000 00 -1 010
With the choice (19) the five components of the operator

Ty, then can be taken as

Ty=E;, Ty=Ejp—Ey;, Ty=E —2Ey+Ey,
22
Ty=Eg, T =Ey-Ey. (22)
Realized as 3 X3 matrices, these are
001 01 0 1 00
T,=[0 0 0}, 7,=[o 0 -1}, T,=[0 -2 o],
000 00 0 0O 01
(23)
000 0 00
T,=(0 0 0} T,={1 o0 o]
1 00 0 -10
USing (18), one readily verifies that T; indeed is the
rank two O(3)-tensor operator:
[Tz,L1]=O, [TZ’L0]=—2T29 [T27L-1]=T1,
(Ty,Ly]=2T,, [Ty,Lo)=-Ty, [Ty,L4]-T, (24)

[TO’ L1]=3T1, [TO,L0]=0, [TO,L_1]=— 3T, etc.
The second order operators C®?’, L% and T? are then
L*=L,L,+L_ L +L%,

T2 =TT 5+ Ty Ty + 5(T Ty + T T + £ T3, (25)

3
cw . i;:,lEmEkF @)L +2T?).

The labeling operators then are
X® - 3(L,T L +L_(T,L_,)
+3(L T\ Ly+ LT\ L +L T Ly+LT_L,)
= 3L TyL + L4 ToLy) + Ly TyL, (26)
and
X =T LoLoTy+ (= Tl LTy +3TyL LTy +3T L L, T
= 8T Ly Ly Ty + 9Ty L 4L 4Ty +3TyL_(L,T,
+3T Lol 4Ty~ 3T\ L LT +3T,L,L,T_
-3T\ L\ L T +9TL\L,T ,+9T,LL,T,
—6TyL L Ty+9T,L LT +9T,L L T,
+6TyL LTy~ 12T,Lo LT 5+6T,L,L_T.,)
+(+-1), ' (26")

where (---) stands for terms with signs of indices op-
posite to those in the first bracket. Here X® and X9
are normalized so that their eigenvalues are integers
whenever possible. The operators X’ in (17) and (26’)
differ by O(3)-scalars of order lower than four. By a
straightforward calculation one verifies that X**?, in-
deed, are O(3) scalars:
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KD L]=[XD, L]=[X?P L ]=0, i=30r4. (27 My My
‘ = (Myg+ Mg + Mgy + 3Myy = 3mgy = 3Mp) | Fmyy ).
An irreducible representation of U(3) is denoted by
integers (my3, my;3, Mmy;) such that my3 > Mg > mgy, I mg, (29D)
=0, a U(3) representation reduces to that of SU(3) with An arbitrary SU(3) pattern for a given representation
p=my3—my3 and g =m,;, The patterns is a linear combination of O(3) states |JM):
Myg , Wlag ~— Mg m
m12m“m22 >’ l 12m“mzz = ;;{a, |JMK). (30)
ni; =My = My, m;, integers 28 . .
tint = Min = Mty Mo INLCEETS, @8 Here a; are some coefficients,
transformed by the generators E;, according to (22) of
Ref, 18, form an orthonormal basis in a space in which M=myy+ My + Moy — Myg = Myy — My (1)
an irreducible unitary repxjesentation of thfe group U(3) is the eigenvalue of L,, J denotes an O(3)-irreducible
acts, If my3=0, the space is irreducible with respect to subspace, and K are the eigenvalues of X ‘¥’ which we
SU(3). Since miyg, my;, and mgg are fixed throughout an want to find, The values of J for any U(3) representation
irreducible representation of U(3), we shall omit them are well known. 1%2° The summation in (30) extends over
when writing the patterns. all J=>M which occur in the SU(3) space labeled by m,5

The C® and C® operators are!? diagonal in the and M,z (m45=0). There is no summation over M in (30)
basis (28) because they are the Casimir operators of because both the Gel’fand—Tseitlin and [JMK) states are

U(3) [and SU3)]. Since Eyy, Eyy, and Es, are diagonal in eigenvectors of the O(2) generator L,. When X‘? acts on

(28) too, Ly and T are also diagonal. One has, in both sides of (30), one gets

particular 2 X (Mg, Moz, M) .m12m11m22>
. myq+mygsmog=M+m3+ma3
m12m“m22>
= 2Ja,K|JMK). (32)
" mzz T K
= (Mg + Mgy + Myy = Mgz — Mgy — Mg) ' i > (29a) ,
The coefficients x, are matrix elements of X ) petween
and the patterns with the same value (31) of M, They are
‘mw m22> calculated using (20), (22), (26), and (22) of Ref. 18,
m For example, the diagonal matrix element of X‘®’ is
|
<m12m My, IX(B) ‘mizm m22> . 3 ((mta — M) (M1s — a3 + 1) (Mg — gy +2) (M2 — may + 1)[2(myg — myy) ~ 2M - N/3]
1 11 mlz—m22+1 (m12_m22+2)

(m13 — Mg + 1) (a3 — mag) (M2g — Mgy + 1) (myy — ma2)[2(myy — myp— 1) — 2M - NL])
(m12 M)

M- 5 4 9 dmas = Mz + 1) (my = mgg) (m1p — ms3 + 1)

+3(mqy ~ myg)(myq — My +1)(2
(myy 11) (M4 22 )( (myg ~ myy +1) (Mg ~ Myy)

(m13 — Mgy +2) (m23 — Mgz + 1)(meay — m3s) ) N
(m12 Wigg + 1)(m12 — Mgy + 2) +2N(M +1)(2M +3), (33)

[

where M is given by (31) and N is the eigenvalue of T: The order of Eq. (35) increases, in general, when the
N2 3(myg — Mgy — Mgg) + Mg + Mgy + 12 (34) absolute value [ M| diminishes, and for M =0, (35) is of
LEN t 137 28 T s the highest order. The order of (35) in this case equals
Substituting (30) into the left side of (32), and comparing to the number of different patterns (28) with M =0, or,
the coefficients of the linearly independent vectors what is the same, it equals the number of O(3) represen-
|JMEK), we arrive at the secular equation tations contained in (m2y3, 7243, #233).
| 2 (mmyq, Mgy, Mgy) -K|=0. (35) From the property
The roots K, K,,-- - of (35) are real because X‘¥ is XD|JME) =K|JME) for M=J,J~1,...,~J,
Hermitian, The value of M in (30) is a fixed parameter.
Hence we have secular equation (35) for every value of of X9 it follows that the eigenvalue will occur as a root

M which occurs in the U(3) representation (myg, M3, M33).  of the secular equation (35) for any M. Similarly, an
[For SU(3) we still have m;;=0. ] Equation (35) is of the eigenvalue, say K’, calculated from (35) with M=M’,

first order when M equals its highest (smallest) value will be a root of every secular equation with | M| < IM’I
within the inequalities (28), i.e., M=m 35— mgy (M=1mg, One has thus two alternative ways for computating the
—my3). Then indeed, there is only one pattern, namely spectrum of X ‘¥’ for a given representation
Mgy =1y = Wyg, Mgy =gy (Myq= Mgy = Mg, Myy="Myy). (my3, Mas, mgs). First is solution of (high order) equation
Consequently, (30) has the form (35) for M =0 in order to get all the eigenvalues K at
m m once. The second way is the solving of equation (35)
By 2 = |myz = myg, myg— mgg, K). (86)  first for M =m,;— my;, then for M=m;—mgy— 1, M=my;
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— m33— 2, and so on. In this manner the order of the
secular equation for a given M is drastically reduced
because most of its roots are known from solving the
secular equation for M +1, To illustrate this point, let
us notice that, e.g., for the SU(3) representation

(12, 6, 0) of dimension 343, the order of (35) at M=0
equals 25. Proceeding the second way, one would have
to solve 4, 4, 3, and 1 secular equations of orders

1, 2, 3, and 4, respectively.

The tables contain the eigenvalues of X’ and X4’ cal-
culated by a computer for the lower SU(3) representa-
tions. For pairs of contragredient representations [i.e.,
representations (m,3, My, 0) and (nyg, My — Myg, 0)] the
O(3) branching rules coincide and the eigenvalues of
X @ giffer by a sign, and those of X? are the same.
Therefore, the tables contain only one representation of
each pair. The computer time needed for construction
of the tables was negligible. Thus in order to verify the
eigenvalues we have obtained, the secular equation (35)
was solved for all M= 0 for both X and X4,

The numerical results presented in the Table I for
the SU(3) representations

(ky, kg, 0) = (M5 — Migg, Myy — Mgz, 0) (37)

[note that 2, >k, = 0 and &, and k, are the lengths of the
first and second row in Young patterns for SU(3)] were
obtained using the above algorithm, starting from
Gel’fand— Tseitlin states. For the particular case con-
sidered in this article, i.e., the SU(3)> O(3) > 0(2)
group—subgroup chain a different method could also be
used for calculating the eigenvalues K, Indeed, Barg-
mann and Moshinsky® and Elliott’ have calculated the
matrix elements of the operator X' = LTL in certain
nonorthogonal bases. All we have to do is take these
matrices and diagonalize them. For analytic calcula-
tions (as opposed to computer ones) this procedure is
simpler.

Since in many applications it is convenient to have
explicit formulas for the eigenvalues K, rather than
only numeric tables, we present below expressions for
K in special cases, when the O(3) representation J oc-
curs in the SU(3) representation (,, k,) once (hence K
is uniquely determined as a solution of a linear equation)
or twice (then K is the solution of a quadratic equation).

To do this, we choose to make use of the Bargmann—
Moshinsky basis vectors P,aik2 7o in which we have

X®Py 410= = 3§ Bera Prgpgle (38)

[see formula (62) of the second of Refs. 6; the factor

(- 3) is due to a difference in the normalization of our
X‘® and their operator Q). The matrix elements f,, are
given by formulas (66) and (67) of Ref. 6 and restric-
tions on the region of summation on (38) are given by
their formula (59).

All we have to do is restrict ourselves to cases when
only one or two values of the label ¢ exist (no degenera-
cy or twofold degeneracy). If there is no degeneracy,
then K = - 3f,,; if there is a degeneracy, then we obtain
the eigenvalues K by diagonalizing the matrix 8.,.

By inspecting the Bargmann—Moshinsky formulas,
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we see immediately that the representation J is con-
tained in representation (%,, 2,) at most once in any of
the following cases:

J=0,1,ky~1 or &, (ky and k, arbitrary), (39)
or

ky=0,1,k;— 1,k (J arbitrary). (40)
The degeneracy is at most twofold if

J=2,3,R -2 or by -3 (k4 and &, arbitrary), 41)
or

ky=2,3,k -2 o0r k-3 (J arbitrary). (42)

Proceeding as described, we obtain the following ex-
pressions for the eigenvalues K in nondegenerate cases.

J=0: We have
K=0 (43)

for k, and %, both even [the representation J=0 is not
contained in (%,,%,) otherwise].

J=1: We obtain

K=—Fk+2k, for &, even, &, odd
=2k{—ky+3 for k; odd, &, even
=- (k1 +k2 +3) for k1 Odd, kZ odd (44)

(/=1 is not present for %k, even, %, even).

J=Fky: We have

K= 3(ky +1)(2ky +3)(k; - 2ky). (45)
J=Fk;—1: We have

K=k, +3)(2k, + 1)k, - 2k,). (46)
ky=0: We have

K=13(2k; +3)J(J +1) for k,—J even (47)

and J is not contained in (k;, 0) for ky —~ J odd.
ky=1: We have
K=~3(ky+1)+ (R4~ 3)J(J+1) for k;—J even
==3(ky+1)+ (kg + 2)JJ +1) for ky—J odd. (48)

ky=k, and ky=Fk — 1: These are contragradient to 2,=0
and k,=1; hence formulas (47) and (48) apply with re-
versed signs.

In the cases when at most a twofold degeneracy can oc-
cur, we obtain:

J=2: We have
K=13[(2k; +3)% - 4ky(ky — ky)]1/2

for By even, ky even, 2k, <k -2,

=—3(2k;+3) for &y even, &, even, k =k,
=3(2k; +3) for ky even, k, even, k,=0,
=3(ky - 2ky) for k; even, ky odd

=-3(2k - Ry +3) for k; odd, k, even
=3(ky+ky+3) for k4 odd, k, odd. (49)
J=3: We have
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TABLE I. Eigenvalues K of the third order operator X3~ L TL. The first column gives the representations of SU@3}, the rows
give all possible values of the O(3) label J and of K within the corresponding representation of SU(3).

0,0,0) J
K
(1,0,0) J
K

(2,0,00 J
K

2,1,00 J
K

3,0,0) J
K

(3,1,0) J
K

@4,0,00 J
K

4,1,00 J
K

4.2,00J
K

(5,0,0) J
K

(5,1,00 J
K

(5,2,0) J
K

(6,0,0) J
K

6 1,04J
K

(6,2.0) J
K

6,3,00J
K

(7,0,0) J
K

(7,1,00 J
K

(7,2,0) J
K

(7,3,0) J
K

8,0,0) J
K

8,1,00 J
K
(8,2,0) J
K
8,3.0) J
K

(8,4,0) J

N X

9,0,0) J
K

9,1,00 J
K

9,2,00 J
K

[

o
MW BW ON HDN D OO

[y

110

55

195

117

39

315

210

105

476

340

204

68

684

513

342

171

3 ©
o S
© T e o0 om

525

0

0

1

0

1

9
2 1
21 -7
2 0
33 0
3 2
63 6
3 2
0 30.741
3 1
78 13
4 3
132 36
4 3
44 79.573
4 2
150 45
5 4
234 89
5 4
117 160
5 4
0 58. 864
5 3
255 102
6 5
375 171
6 5
225 277.903
6 5
75 137.827
6 4
399 190
7 6
561 288
7 6
374 439.120
7 6
187 256.966
7 6
0 -92.223
7 5
588 315
8 7
798 446
8 7
570 649.542

-2

—30.741

- 58. 864
17

166

82. 097
- 1'7' 827
57

288
172.880
49.034
92,223

3

126
6
453

7
300. 458

0

0

1

-9
2 1
-33 11
2 1
12 -4
3 2
0 41.677
3 3

92.223 ~92,223

3 2
54 33
4 3
60 100.723
4 4
186.231 -56.231
0
0
4 3
123 99
5 4
153 195.426
5 5
321.259 8.741
5 5

148.704 —148.704

1

21
5 4
225 200
6 5
285 331.966

~41.677

-11

-10.723

-108

2
18

4
42.574

4

O oo

—45

30

87.827 —67.827

4

4

214,075~214.075

3
72

5
124,034

2

39

4
76

1
15
2 1
39 -13
2 2
53.075 —53.075
3 3
109. 763 ~ 121,763
4 3
0 0
1
-13
3 3
122,795 -—-8.795

AN OO

2

1
-2

2

51.701 -~51,701

2
-~ 57

19
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TABLE 1. (continued)

9,3,00 J 9 8 7 7 6 6 5 5 4 4 3 3
K 315 342 422,117 147.883 503.385 108.615 182.223 —2.223 219.031 —69.031—137.223 47.223
J 2 1
K 45 ~15

(9,4,0) J 9 8 7 7 6 6 5 5 5 4 4 3
K 105 114 208.882 -18,882 284,014 -—~80.014 365,586 —167.567 56,981 —241.259 71.259 127.426
J 3 2 1
K —25.426 -51 17

(10,0,0) J 10 8 6 4 2 0
K 1265 828 483 230 69 0

(10,1,0) J 10 9 8 7 6 5 4 3 2 1
K 1012 1092 651 667 366 342 157 117 24 -8

(10,2,0) J 10 9 8 8 7 6 6 5 4 4 3 2
K 759 819 015,101 470.899 462 239.837 516.163 189 231.906  62.094 0 64.692
J 2 0
K —64.692 0

(10,3,0) J 10 9 8 8 7 7 6 6 5 5 4 4
K 506 546 639 285 738.624 249.376 320.882  93.118 373.216 16.784 119 -79
J 3 3 2 1
K=151,460 127.460 12 -4

(10,4,0) J 10 9 8 8 7 7 6 6 6 5 5 4
K 253 273 374.279 87.721 468.452  25.548 568.366 149.892 —91.257 182.014-182.014 247.375
J 4 4 3 2 2 0
K-269.112  21.737 0 —62.426 62.426 0

(10,5,0) J 10 9 8 8 7 7 6 6 6 5 5 5
K 0 0 130.111 -130.111 213.169 —213.169 315.728 —315.728 0 409. 805~ 409. 805 0
J 4 4 3 3 2 1
K 92.223 -~92,223 138,942 —138.942 0 ]

(11,0,0) J 11 9 7 5 3 1
K 1650 1125 700 375 150 25

(11,1,00 J 11 10 9 8 7 6 5 4 3 2 1
K 1350 1449 909 936 552 531 279 234 90 45 -15

(11,2,00 J 11 10 9 9 8 7 7 6 5 5 4 3
K 1050 1127 1241.755 690.245 690 753.821 396.179 345 387 165 92 145.426
J 3 2 1
K -17.426 -69 23

(11,3,0) J 11 10 9 9 8 8 7 7 6 6 5 5
K 750 805 913,394 466.606 1032.968 437,032 223,721 510.279 578,506 141,494 230.023 9.977
J 4 4 3 3 2 1
K 252.168 —82.168 - 166.763 64.763 51 -17

(11,4,0) J 11 10 9 9 8 8 7 7 7 6 6 5
K 450 483 594,225 233,775 708,135 173.865 828,332 287.538 18.131 339.169 —87.169 417.241
J 5 5 4 4 3 3 2 1
K —200.262  98.020 —296. 648 86.648 147.906 —21.906 - 63 21

(11,5,0) J 11 10 9 9 8 8 7 7 7 6 6 6
K 150 161 292,172 ~-16.172 397.298 -103.298 517.824 —231.787 91.962 633.480-345.871 111.391
J 5 5 5 4 4 3 3 2 1
K —454.366 205.257 -35.892 273.216 —83.216 —155.636 41.636 57 -19

(12,0,0) J 12 10 8 6 4 2 0
K 2106 1485 972 567 270 81 0

(12,1,0 J 12 11 10 9 8 7 6 5 4 3 2 1
K 1755 1875 1226 1266 789 773 444 396 191 135 30 -10

(12,2,0) J 12 11 10 10 9 8 8 7 6 6 5 4
K 1404 1500 1635.477 964.523 975 599,201 1050.799 550 305.969 594,031 225 269,154
J 4 3 2 2 0
K  80.846 0 76.426 —76.426 0

(12,3,0) J 12 11 10 10 9 9 8 8 7 7 6 6
K 1053 1125 1251.147 698.853 1392.403 677.597 756.225 395.775 840.970 311.030 388.597 133.403
J 5 5 4 4 3 3 2 1
K 425.641 24.359 151.231 —91.231 145.245 —181.245 18 -6

J. Math. Phys., Vol. 15, No. 10, October 1974



1796 Judd et a/.: Complete sets of commuting operators 1796

TABLE L (continued)

(12,4,0) J 12 11 10 10 9 9 8 8 8 7 7 6
K 702 750 874.359 425.641 1009.088 370.912 1151.439 477.878 164.683 549.298 48,702 642,696
J 6 6 5 5 4 4 4 3 2 2 0
K 212,121 —95.817 216.187 — 216,187 —324.526 281,695 42,831 0  73.546 —173.546 0

(12,5,0) J 12 11 10 10 9 9 8 8 8 7 7 7
K 351 375 511.507 138.493 638.709  51.291 779.553 227.926 —110.479 918.293 270.150 —243.443
J 6 6 6 5 5 5 4 4 3 3 2 1
K -377.824 371.787 48.038 —498.902 460.440 8.463 120.023 —100,023 —~168.361 156,361 6 -2

(12,6,0) J 12 11 10 10 9 9 8 8 8 7 7 7
K 0 0 —172.049 172.049 —284.747 284,747 429.367 —429.367 —0 566.960 —566.960 0
J 6 6 6 6 5 5 4 4 4 3 2 2
K —698.844 698.844 138.430 ~138.430 213.169 —213,169-301.257 301.257 0 0 72,560 - 72.560
J 0
K 0

TABLE II. Eigenvalues K of the fourth order operator X¥)=T L L T. The first column gives the representations of SU(3), the rows
give all possible values of the O(3) label J and of K within the corresponding representation of SU(3).

0,0,00 J 0
K 0
(1,0,0) J 1
K -35
2,0,0) J 2
K 63
2,1,00 J 2
K 63
(3,0,0) J 3
K 342
3.1,00 J 3
K 222
4.0,00 J 4
K 898
(4.1.0) J 4
K 490
4,2.0 J 4
K 354
(5,0,0) J 5
K 1875
6,1 0J 5
K 963
5,2,0) J 5
K 507
6.0,0) J 6
K 3465
6,1,0) J 6
K 1785
6,2,0) J 6
K 777
6,3,00J 6
K 441
(7,0,00 J 7
K 5908
(7,1,00 J 7
K 3148
(7,2,0) J 7
K 1308

— 840

-315

—-1323

-105

-1881

438

270

— 2562

1458

922

— 3366

3147

1995

1611

—4245

5745

3681

1
—1043

0
—2352

2
-1617

2
-297

1
- 3347

3
— 2466

3
—-2307.729

2
~4689

4
— 3638

4
—3678.851

4
- 3654

3
— 6522

5
- 5133

5
—5596.600

— 1547

- 1449

2
-1881

3
543. 729

0
—4536

3
- 2154

4
2114, 851

4
1530

1
-6107

4
- 2318

5
4642, 600

~2016

—2691

-1185

—4065

—-1578

—954

—-6114

- 2094

- 2699

- 3419

- 3825

774

2
~ 4425

3

-1617

— 3825

1
-~ 4979

3

—5836. 759 —1543,241

— 3864

— 3051

-~ 2745 - 5091
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K=0 for ky even, ky even, 2<ky<k;-2,
= = 8{ky — 2ky £ [(ky — 2k5)? + 15(k + 1)(ky + 3)]'/7}
for ky even, Ry odd, 3<ky<k -3,
=-9(k;+3) for ky even, Ry odd, k=% -1,
=9(ky+3)
=3{2k, — by + 3+ [(2ky — by +3)? + 15k, (ky +2)]' 2}
for &y odd, %, even, 2<ky, <k, -3,
=-9(k; - 1) for k; odd, %k, even, ky=k -1,
=6(2k; +3)
=~ 3{ky +ky+ 3£ [(ky +Fy+3)2 +15(k; — ky) (B — Ry + 2)]1 /2
for ky odd, %, odd, 3 sk, <k -2,
=—6(2k;+3) for ky odd, &, odd, k4 =k,,

for k; even, ky odd, ky=1,

for &, odd, &, even, k,=0,

=9(k,-1) for ky 0dd, k, odd, ky=1. (50)
J=k;~2: We have
K==3{(2ks+1)(k; +1)(2k; - y)
+ 6[— 4k3ky(ky — ky) + b} +2k3 — R} — 2k~ 11172} (51)

valid for 2 <k, <k, - 2 [if k, is outside these bounds,
there is no degeneracy and we can use Egs. (47) and

(48)].
J=Fky~-3: We have
K=~ 3{(2k; +1)(k + 3)(2k, — &y)
+6(— 4kiky (k) — ko) + S + 6 — ORT — 6k + 911/ %}
for 3<ky<k -3
=+3(2k, +1)(ky +1)(k; —6) for ky=2 or By -2,
For ky=0,1,k; -1 or &k, see (47) and (48).
ky=2: We have
K=Y @k +1)J - 2)(T+3)
£ 6[T(T = 1)(T+1)(T +2) + (2k; + 1)2]1/%} for ky—J even
=42k + V)[J (T +1) - 12] for k; —J odd
(53)

[the first formula holds for 2 <J <k, - 2; otherwise there
is no degeneracy—see (43)—(46)].

ky=3: We have
K= {30k, - (20, - 3)J(/+1)

+ 6[16k] — 4k J(J +1) + 4+ (J - 3)(T - 1) (27 +3) /%
(54)

(52)

for By —J even, 3<J <k -3,
K=1{30, - (2k, +3)J(T +1)
+6[16kF + 4k, J(J+1) + T4+ (J - 3)(J - 1)(2T +3)]1/%}
for ky~J odd, 3sJ <k ~3.
For J<2 or J=k, -2 see earlier formulas.

ky=k —2 and R, — 3: These are contragredient to ky=2
and £,=3. Hence formulas (53) and (54) apply with re-
versed signs.

Further explicit formulas (for J=4,5,k; - 4,k - 5,
ky=4,5 k— 4,k - 5) could be obtained by solving cubic

J. Math. Phys., Vol. 15, No. 10, October 1974

1797

equations (that may in some cases reduce to quadratic
or linear ones), and we could proceed even further by
solving quartic equations. We have, however, decided
not to proceed in this direction.

Let us make a few further comments:

1. The eigenvalues of the operators X ‘¥’ coincide for
the U(3) representation (5, M3, M4g) and the SU(3)
representation (miy; — Mg, Mys — Mgy) = (Ry, ky).

2. For any self-contragredient representation, i.e.,
such that my5 — M35 = 2(my3 — Mmy3), and for any fixed value
of J, the sum of all eigenvalues of X ®’corresponding to
J equals zero. More precisely, one has

X® m1zm m22>=0' (55)
1

Py My
myymgamagdimyg g

This property is evidently connected to the auto-
morphism T;—~ - T;, L;—~L;, for which X ¥ — - X‘®

3. A given eigenvector |JMK) of X ¥ pelonging to a
representation space of (13, M,3, Mg3) is readily con-
structed if one knows all eigenvalues K; belonging to
(my3, My3, M33). Indeed,

| TME ) ~ 1L XD - K)y, (56)
where ¢ is an arbitrary vector from the representation
space of (m13, Myg, M33) such that

(b|JMEK,)#0.
4. CONCLUSIONS

The contents of this article can be summarized as
follows:

1. We have shown that for an arbitrary semisimple
group G and its semisimple subgroup H there exists only
a finite number of independent scalars with respect to
H in the enveloping algebra of G.

2. We have derived a generating function for the num-
ber of O(3) invariants of any given order in the envelop-
ing algebra of SU(3). The method is quite general and
can be applied to any (semisimple) group G and its
(semisimple) subgroup H.

3. We have used the above results to prove that be-
sides the Casimir operators of SU(3) and angular mo-
mentum L? only two other independent O(3) scalars exist
in the enveloping algebra of SU(3), namely X®'=L,T,,L,
and X9=L,T,T,L. (both of these operators have al-
ready made an appearance in the literature®!%13), Either
of these operators (or an arbitrary nontrivial poly-
nomial in C®’, ¢, L? X XxX@W and L,) can be used
to resolve the missing label problem in the SU(3)> O(3)
S 0(2) reduction.

4, We consider the basis functions

| (43, My, mys) TMK) (57)

for irreducible representations of U(3), where

(my3, Myg, g4) label the U(3) representation [k, =,

— Mgy, By=Mgy~ My, for SU(3)], J is an eigenvalue of L?,
Mof L, and K of X'V i.e.,

X O (mygmogmys) JME ) = K | (mygmysmy) JMK), =3 or 4.

We also make use of the Gel’fand—Tseitlin formalism to
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derive a simple algorithm for evaluating K for any rep-
resentation, The values of K are computed numerically
for a large number of representations of SU(3) and
presented in the tables (containing all representations
of known physical interest). In the case when the mul-
tiplicity of the O(3) representation J in the SU(3) rep-
resentation (&, k,) is 1 or 2, we give explicit formulas
for the eigenvalues K of X’ in terms of k,, k,, and J
[see Eqs. (43)—(54)]. They are, of course, in agree-
ment with Table I

The eigenvalues K are integer whenever there is no
degeneracy in J, If there are two or more multiplets
with the same J, then the sum of the eigenvalues is in-
teger, although the individual K’s are solutions of
algebraic equations of order equal to the multiplicity
of J in the given SU(3) representation, The eigenvalues
K corresponding to the same J in contragredient rep-
resentations of SU(3) differ by a sign in the case of X ‘¥
and remain unchanged for X, For self-contragradient
representations the sum of all xX® eigenvalues corre-
sponding to O(3) multiplets with the same J equals zero:
if there is only one multiplet with a given J=J;, then its
K equals zero.

We have chosen to present a smaller number of com-
puter calculated eigenvalues of X in Table II, than for
X in Table I. The computer programs we have used
are available on request and are suitable for arbitrary
representations of SU(3). Similarly we have running
programs for explicit construction of eigenvectors of
X® and X9 as linear combinations of Gel’fand—
Tseitlin patterns, and also a program for calculating
matrix elements of any polynomial of U(3) generators
relative to both the basis of patterns and to the basis
(57).

It should also be mentioned that a large amount of
literature related infer alia to the SU(3)D> 0(3) D> 0(2)
missing label problem exists. Besides the articles al-
ready quoted we mention the work of Biedenharn, % the
review by Louck and Galbraith? (containing numerous
references) and the recent article by Asherova and
Smirnov, 2

Let us make a few comments on physical applications
of the results of this paper.

1. The fact that the basis functions (57) form an
orthonormal set is particularly helpful, e.g., if we are
interested in calculating matrix elements of some
operator @ (a Hamiltonian, a term in a Hamiltonian, a
transition operator, etc.) that commutes with X ¢
since we will then obtain selection rules with respect to
K. Similarly, if some polynomial P(X® X ¢c® ¢c®),
L?, L,) commutes with @, rather than X‘® jtself, then
this operator P should be used to provide the missing
label. It is certainly of interest that the algebra of such
polynomials is finitely generated.

2. Various O(3) scalars in the enveloping algebra of
SU(3) have been succesfully used as models for two- and
three-body forces. 2% One implication of the present
results is the following:

The only “fundamental” forces that can be introduced
in an SU(8) scheme with an O(3) invariant interaction
are two-body forces involving C®' and L?, three-body
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forces involving C®’ and X®’ and four-body forces,
involving X W, Any other forces can be represented as
polynomials in the fundamental ones.

3. The formalism developed in this article has an
amusing application in elementary particle physics. In-
deed, the problem of constructing a state vector for N
identical pions in a state with definite isospin T can be
solved by embedding an O(3) group, related to the
isospin, into an U(3) group. %% The N-pion state will
be characterized by the U(3) labels N;, N,, N; (with
N=N;+Ny+N;, Ny=N,>N;=0), the isospin T, charge
Q= T; and the degeneracy label K (the correspondence
with the notations of the present article is Ny =m,,
Ny=my3, Ny=myy, T=L, @=Ly, If K is identified with
the eigenvalue of operator X® as in this article, it is
possible to obtain rigorous limits on the charge distri-
bution of pions in N-pion production, following from
isospin conservation and Bose statistics alone. This can
then be done for arbitrary values of the isospin T'; pre-
vious considerations? % were restricted to T=0and 1,
when no degeneracies occur. The results are presented
in a separate article, %7

Other group—subgroup chains of physical interest with
a missing label problem are presently being con-
sidered. Work in progress on the Wigner supermultip-
let scheme SU(4)> SU(2) XSU(2) (two missing labels) and
also the schemes SO(5)> SU(2) xU(1) (one missing),
SO(5) > SO(3) (two missing), and G, SO(3) (four labels
missing).
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Some topological and graphical aspects of phase

contours
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Using the topological properties of phase contours, the phase contour diagram of a function in the
complex plane is reduced to the simpler form of a bichromatic multigraph, which contains all the
combinatorial characteristics regarding links between zeros and singularities of the function. It is
found that the saddle points of the phase play an essential role in any such qualitative global
description of the function, as can be anticipated from Morse theory. In the case of the scattering
amplitude, constraints from symmetries, periodicity, or unitarity are seen to yield simplifications with
interesting results concerning factorization and asymptotic behavior.

1. INTRODUCTION

Qualitative methods of analysis® have been known to
provide useful insight into the nature of the solutions of
complicated dynamical problems, where a quantitative
solution turns out to be impossible or extremely difficult
to obtain. They are valuable in establishing existence
and consistency conditions and in indicating peculiarities
of the solution, so that the subsequent application of
quantitative methods for an exact or approximate solu-
tion may be facilitated. It is of course also possible that
the particular problem of interest has no quantitative
content, so that qualitative methods alone can suffice.

The richness of the singularity spectrum of the strong
interaction amplitude, which makes an analytical solu-
tion difficult, provides a nontrivial and interesting field
for the application of certain qualitative methods, espe-
cially those of a topological nature. Of all the different
approaches to the study of symmetry and consistency
conditions for scattering amplitudes, that which most
successfully exploits the global topological properties is
probably the phase contour method, 2~° where patterns of
singularities and zeros of amplitude functions related by
crossing or some other symmetry have been investigated
using specific dynamical models, like Regge asymptotic
behavior, or more general physical principles, like
unitarity or hermiticity, but without resorting to numer-
ics for most results. On the other hand, by analyzing
the data with dispersion relations, one can obtain'®:*!
the phenomenological picture of such patterns, showing
intimate relations between specific zeros and poles of
the amplitude. Such relations probably have more topo-
logical than geometric significance, because the com-
plications from a complex background or kinematic pe-
culiarities usually destroy the usefulness of metric-de-
pendent geometrical concepts like linearity or convexity,
while topological invariants are less likely to be affected
by errors in the data or by perturbative correction
terms in a theoretical study.

In previous applications of the phase contour method
more emphasis was laid on the physical content than on
the topological side of the approach. This left certain
mathematically undesirable features in the treatment,
e.g., ambiguity in the labeling of phase and arbitrari-
ness in the spacing of phase contours. Besides, the
crucial dependence on visual presentation made any
generalization of such techniques to complex spaces of
multiple dimensions obscure and impracticable. The
usefulness of topological methods, especially of the
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critical point theory of Morse, !314:! in the global analy-
sis of complex functions has been of great interest to
mathematicians in recent years. In this paper we intend
to introduce the concept of topological invariants in the
study of phase contour diagrams and show the relevance
of critical points and of Morse theory in this context. In
the case of a single complex variable we shall show how
phase contour diagrams (PCD’s) can be reduced to
graphs containing all the combinatorial information re-
lating poles, zeros, and critical points. We shall follow
a rather heuristic line so that the formalism may remain
sufficiently transparent to show its relation to the pre-
vious works with the phase contour method.

In Sec. 2 the phase contour diagram is redefined on a
more abstract footing than previously. We use the con-
cept of bundles of phase contours connecting sources of
opposite polarity. In Sec. 3 we show how homotopical
equivalence of contours allows us to derive bichromatic
multigraphs®® from the PCD’s. We indicate the impor-
tance of the critical points of the function in a compre-
hensive topological description of these graphs and
hence also of the original PCD’s. In Sec. 4 we look into
the consequences of physical constraints, like her-
miticity, positivity over the cut from unitarity, asymp-
totic behavior, and periodicity in the patterns of zeros
and poles.

2. PHASE CONTOUR DIAGRAMS

Let F be a complex function defined in an n-dimen-
sional complex space C" with points z=(z2,, 2,,..., 2,).
The phase of the function is defined, as usual, as the
real-valued function

¢(2)=1Im log F(z). (2.1)

We define phase contours P; in the space C" as the con-
nected sets of points P, c C", such that ¢(z)=K, (a con-
stant) for all z ¢ P,. Since the n-dimensional complex
space corresponds to a 2n-dimensional real space, the
P, are, because of the single constraint (2.1), (2n-1)-
dimensional real subspaces in this real space. If we
consider functions of a single complex variable z=z2,,
the phase contours are simply the familiar contour
curves in the complex z plane. Usually®>~*! a PCD is de-
fined as the collection of P, drawn at regular intervals
A with K, =K, +iA (i=0,1,2,...), on the whole z space
or a section of this space. However, the arbitrariness
of K, and A introduces an unsatisfactory discrete de-
scription of a generally continuous function ¢. In this

Copyright © 1974 American Institute of Physics 1800
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paper we shall define a phase contour diagram D as the
collection of all P, corresponding to every value K, in
the range of ¢. According to this definition, any point
where the phase ¢ is defined must lie on a phase con-
tour P,.

In a similar way one can define a modulus contour
diagram with the modulus u of F given by

n(z)=Re log F(z),

for all z = C" where log F is defined. These again are
(2n - 1)-dimensional real subspaces, or one-dimensional
curves if #=1. In the latter case, phase and modulus
contours form two orthogonal families of curves, by
Cauchy—Riemann conditions, spanning all points of the
complex space where logF is defined. The logarithm
has branch points at the origin and at infinity. Hence ¢
and p are defined everywhere, except where F has a
singularity or a zero and along cuts joining the zeros
and the singular points. The behavior of phase contours
in the neighborhood of a singular point or a zero depends
on its type and order. In the neighborhood of an essential
singularity or an exponential zero, phase or modulus
contours are not well defined. We shall consider only
isolated singular points and zeros of finite order. Let

F be factorizable into the form

(2.2)

F(z)=(z - z,)%if(z), (2.3)
where a, is a positive or negative integer, f(2) being
regular and nonzero at z,. The phase ¢ is the sum of

the phases of the two factors

¢(z)=a,;Imlog(z — z,) + Im log f(2). (2.4)

Since the second term is regular near z;, by choosing a
disk small enough around z, its variation can be made
as small as desired, so that we can effectively replace
it by a constant within the disk and on its boundary. At
the boundary of the disk z =z, + v e’ we have

¢(6) = a,0 + const. (2.5)

On a complete rotation around z,, ¢ changes by 2a;m7,
necessitating a branch cut. However, the different
sheets of this logarithmic singularity differ only by
multiples of this constant 2a,7, changing the label ¢, of
every phase contour P;, leaving the P, themselves and,
hence, the PCD invariant. It is, therefore, sufficient to
consider just one sheet.

If ;>0, i.e., 2z, is a zero, ¢ increases for an anti-
cyclic rotation around z,. We shall call z; a source of
strength ;. Similarly, if @;<0, i.e., if z; is a singu-
larity of F(z), ¢ decreases for an anticyclic rotation
around z;, which will be called a sink of strength a;, or
a source of strength — a,. These terms are borrowed
from the obvious electrostatic and hydrodynamic anal-
ogies. We shall also use the term “source” generally to
indicate either a source or a sink.

Lemma 2.1: P, are continuous open sets with sources
and sinks as their limit points.

Proof: The continuity of P; at regular points follows
from ¢ being a harmonic function and satisfying
Laplace’s equation. Closed loops of P, are not possible
because then the orthogonal modulus contours entering
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the region bounded by P, must either converge to one or
more points, which is impossible even at singularities
of F, or pass out of the region through another point of
P,. In the latter case, modulus contours must exist
whose two points of intersection with P, approach coin-
cidence, i.e., the modulus contour becomes tangential
to P,. This too is forbidden by the orthogonality con-
dition. Hence all P, must be open and have singularities
of log F as limit points.

Let B be the set of all P, such that the subspace X c C”"
covered by the set B={P } is arcwise connected. We
call B a phase bundle, in loose analogy with fiber bun-
dles, as the connected and continuous set B may be con-
sidered to fibrate the space X, though the definition of
the base space becomes complicated because different
ends of different P, = B may have different singularities
as limit points. If all P, ¢ B have the same two limit
points, we shall call it a closed bundle. Henceforth only
closed bundles will be considered and for brevity these
will be called simply bundles. We shall call the differ-
ence between the extremal phases in B its thickness.

Lemma 2.2 The limit points of a phase bundle of non-
zero thickness are sources of opposite polarity.

Proof: If D, is a small disk around the limit point A,
with the boundary 9D,, we have seen in Eq. (2. 5) that
the P, form a monotonic sequence on an arc of 8D,.
Since different P; cannot intersect, on a continuous de-
formation and translation of the arc from oD, to 0D,
the boundary of a small disk around the other limit point
B, the sequence will remain unaltered with respect fo A,
but the orientation with respect to B will be opposite to
that at A. Hence, again from Eq. (2.5), the o at B must
have a sign opposite to that of A.

Lemma 2.3: If B, and B, are two different bundles
sharing the limit point 4, but with the other end points
a and c different, and if B,,n B,.# ¢, then this intersec-
tion contains a critical point of the function.

Proof: If the intersection is nonzero, it must be the
whole or part of the adjacent boundary contour. It cannot
be the whole contour because, by assumption, the other
limit points @ and ¢ are different. Hence it can only be
part of the bounda;y contour which must at some point
split into two branches to join the different limit points
a and c. At the branching point, a tangent to the contour
must become indeterminate. From the definition of the
phase, Eq. (2.1), and from the Cauchy—Riemann con-
ditions, it can be seen that at the branching point

dF

d(1nF) ZF:O. (2.6)

However, F cannot be infinite at an analytic point of the
function, so that we must have dF =0, which makes the
branching point of the contour a critical point of the
functions ¢ and pu. If it is a nondegenerate critical point,
i.e. if the Hessian

_P¢

axi axj (xlzx; xzzy)

does not vanish, then it would have'? two eigenvalues of
opposite sign and the critical point would be a saddle
point. We shall call the contour attached to the critical
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point, the critical value contour. Obviously the thickness
of a bundle is equal to the difference between the phases
on the critical value contours bounding it.

If o, is a nonintegral real number, F has an algebraic
branch point at z,; with a finite (if @, is a rational frac-
tion) or an infinite (if @, is irrational) number of
Riemannian sheets. If F has only algebraic singularities,
it can be seen from Eqs. (2. 3) to (2. 5) that the PCD’s
on all sheets of F are identical, except for a constant
shift in the labeling of all contours on each sheet. If the
branch cuts are taken along the phase contours, no con-
tours move from one sheet to another, so that each sheet
becomes self-contained. Similarly, the logarithmic cut
associated with poles and zeros of integral order are
also made harmless by choosing it along a P, in a bun-
dle B. Then B becomes effectively the union of two bun-
dles

B=B,UB, (2.7)

separated by the cut. However, if explicit labeling of
the phase is avoided (e. g., if we consider only proper-
ties of the differential d¢, which is well defined and has
no loga}itﬁmic cut at regular points of F, and is suffi-
cient to determine the singularities and zeros of F as
well as the critical points of ¢), then B can be con-
sidered to be a single effective bundle with a thickness
g given by

tp= tal * tBZ’

which is invariant with respect to the choice of the P,
chosen for the cut, i.e., with respect to the particular
partition of B into B, and B,. ‘

By mapping a cut sheet stereographically in the usual
way onto the unit sphere, the “point at infinity” can be
treated as any other point. From Eq. (2. 3) we can get
a source~sink duality on this sphere; every source of
strength a (positive or negative) at a finite point must
be accompanied by a source of strength — a at the point
at infinity.

Theorem 2.1: For a function with only algebraic sin-
gularities (including nonrational orders) the algebraic
sum of the thickness of the phase bundles leaking into
adjoining sheets through the cuts is zero.

Pyoof: Since F is by assumption completely factor-
izable into the form of Eq. (2. 3), the point at infinity is
a source of strength equal, but opposite in sign, to the
algebraic sum of the strengths of sources at finite
points. By Laplace’s equation, no other sources exist
on a particular sheet; hence, bundles crossing into
another sheet must return to join a source of opposite
strength on the same sheet, or be cancelled by a bundle
of opposite thickness emerging from the uncompensated
source passing into another sheet, or the bundle may
have both end points on other sheets. In each case we
can see that the net thickness of flux bundles passing out
of the branch cuts is zero.

Corollary 2. 1: The algebraic sum of the thickness of
phase bundles passing into each algebraic branch cut is
zero. This follows from the fact that all the sheets of an
algebraic branch point are interconnected through the
same branch cut, and the net flow of phase bundles into
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each sheet is zero (by Theorem 2. 1). Therefore, all
leakages into other sheets may be regarded as ineffective
crossings of the branch cut which were mentioned by
Eden ef al.?'® However, this will not be true in general
when different sheets have different singularity struc-
tures, as in the case of the physical scattering amplitude
or a properly unitarized model of it.

3. GRAPHICAL REPRESENTATIONS

Given a bundle B, all P; < B (except the extremals,
which, being critical value contours, have branches and
hence a more complicated topology) can be continuously
transformed into one another, i.e., there exist map-
pings homotopic relative to the end points giving all the
P,c B-3B(=B). In other words, all P, c B are derivable
from mappings belonging to a unique homotopic equiva-
lence class. This would also extend to the case of the
compound bundle [Eq. (2. 7)] of an algebraic function, if
contours on other sheets are identified with their images
on the original sheet. So far as the combinatorial prob-
lem of the linkages between zeros and poles is con-
cerned, for many purposes it is sufficient to consider
only the equivalence classes of contuours, as individual
contours within a bundle are of little topological interest.

We shall call the set of singular points of the phase
and the homotopically equivalent classes of P, (or the
open sets B) represented by arcs connecting the relevant
limit points, a graphical representation of the PCD, or
a phase contour graph (PCG). A PCG has the same
homotopy type as the PCD from which it is derived.

In general a PCG would be a multigraph, i.e., mul-
tiple arcs between the same vertices would exist, pro-
vided they are homotopically inequivalent. We can give
an arc a weight equal to the thickness of the bundle it
represents. Obviously the algebraic sum of the weights
of the arcs of w] meeting at a vertex i indicates the
strength and type of its singularity:

2iwi=27na, (3.1)
M

where o, is the index used in Eq. (2. 3) to show the na-
ture of the phase singularity at z,. We shall use the

sign convention that an anticyclic rotation of increasing
phase in the PCD corresponds to an outgoing positive
weight for the arc representing the bundle, in conformity
with our use of the terms “source” and “sink” in the
previous section.

Since B, B, = ¢ for any two bundles B, and B, in a
PCD, the arcs representing B’1 and Ez cannot intersect
either. Hence a PCQG is a planar graph. If only arcs of
finite weight are considered, we can see from Lemma
2.2, which states that bundles of finite thickness must
connect sources of opposite sign, that the PCG must be
a bichromatic graph, i.e., a graph where the vertices
belong to two distinct classes and the arcs join vertices
of only different types. The PCD’s of an algebraic func-
tion being identical on all sheets, so will be the PCG’s.

Lemma 3. 1: The faces of a PCG are homotopic to the
critical value contours and the associated critical points.

Proof: Let D be a PCD with sinks and sources S, and
phase bundles B%, connecting S, with S,. Let G be the

PCG of D with vertices v, and arcs af, connecting v, with
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FIG. 1. A maximal bichromatic multigraph with periphery
C{U C;. A third vertex V' would result in a new arc C’, A is
the inner part of the graph.

But D =U S,UB% U 8B%, and G=Uv,U d},U f,, where f,
are the faces. The mappings % being homotopic relative
to the set {S,}, v, can be identified with S,. Hence the
rest of D is mapped onto the rest of G, i.e., U 9B}, —~Uf,
Matching individual connected components we get a one-
to-one correspondence between the critical value con-
tours of D and the faces of G.

v;. Let & be a set of homotopic mappings % : B}, —a},.

Theovem 3.1: The PCG is maximally connected in the
absence of degenerate critical points.

Proof: Let D be the PCD of the function and G its
graphical representation. If G is not maximally con-
nected, there exists a source—sink pair (v;, v,) e G,
which can be connected by an arc a;; homotopically dis-
tinct from the arcs already present. Let k be the set of
homotopic mappings 4 :D —~G. Now, (k™ a,,) Ny, B,
=¢ (for B, , with m =i, n=j does not exist). Hence
ka;,;cdB,u aTs’j,, for some k#j and some ! #i. Let
0D, be the boundary of a small disk around {. A point on
8D, on the other side of B;, must belong to another bun-
dle, ﬁikl. Similarly, there is another bundle B, sepa-
rated, in part, by 3B,,,. So g;; is the image of part of a
critical value contour which has at least six endpoints:
i,j,k, 1, R, and I'. But by Morse theory a nondegenerate
critical value contour in a two-dimensional manifold can
only have four branches. Hence, if there is no degener-
acy, f?, ; and its graphical image a,;; must already exist,
making G a maximally connected graph.

n

Corollary 3.1: The faces of a PCG are quadrilaterals.
The proof is similar to the case for maximal bichro-
matic graphs without multiple arcs. First, it is obvious
that a face of a bichromatic graph can have only an even
number of vertices and sides. As a face cannot be
bounded by two homotopically distinct arcs, the mini-
mum number of sides is four. If there are more than
two vertices of either color, then, in addition to its two
arcs connecting a vertex with adjacent vertices of op-
posite color, a diagonal can be drawn from it to a third
vertex of opposite color on the periphery of the face. If
the graph is maximal, such an arc must already exist,
but the face would then split into two faces. Hence each
face must contain exactly four vertices (two of each
color) on its boundary.

From the PCG, two graphs of interest can be de-
rived—the dual graph and the medial graph. The dual
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graph is constructed by joining the midpoint (in the to-
pological sense, meaning any interior point) of every
face with the midpoints of its boundary arcs. We shall
also consider the domain exterior to the graph as a
face, though unlike the other faces this will not be a
quadrilateral.

Lemma 3. 2: The outermost circuit of a maximal
bichromatic multigraph consists of only two arcs.

Proof: If there is a second vertex of either color on
this circuit, it can be joined to the adjacent vertex of
opposite color with an arc surrounding the entire graph
except the original linkage between the two vertices
(Fig. 1) that forms a new periphery. But this is impos-
sible because the graph is already maximally connected.

Theovem 3.2: The dual graph of the PCG is the
graphical equivalent of the modulus contour diagram. By
a graphical equivalent we mean that nonintersecting
cycles of this dual graph represent all the different
homological equivalence classes of modulus contour
cycles of the modulus contour diagram.

Pyoof: The modulus contours, being orthogonal to the
phase contours, should encircle the sources and sinks.
The homological equivalence class of a modulus contour
depends only on the particular pole or zero it encloses.
If the modulus increases away from the region bounded
by the contour we shall give the contour a cyclic sense.
In this case we have a pole inside, and with opposite
orientation and growth rate we can associate a zero.
Since each face represents a critical point, joining ad-
jacent critical points by lines bisecting the arcs of the
original PCG, we essentially generate loops around the
sources and sinks, and hence the homology classes of
the modulus contours. The proper orientation of the cy-
cles follows by giving each segment between successive
critical points a direction agreeing with the Cauchy—
Riemann conditions. '

It is easy to verify, by simple counting, that the to-
pology of the PCG, even when accompanied by the spe-
cification of the arc weights, cannot determine the func-
tion completely. For example, the function

F(Z):C[(Z—Zl)(Z—Zz)/(Z—Z3)(Z—Z4)] (30 2)
will have a graph of four vertices, two of each color,
and in general five topologically-distinct arcs (Fig. 2).
There are only two independent weights corresponding
to the loops, but the function F has ten real parameters
from the five complex parameters C, z,, 2,, z,, and z,.
This indicates the existence of a class of transforma-
tions under which the topology and the weights of the
arcs remain invariant.

A change in the topology occurs when one or more of
the arc weights go to zero, which can happen (as we
shall see in the next section) whenever the sinks and
sources move into a pattern with a reflection symmetry.
The weights remain unchanged if the critical values re-
main invariant under the transformation which may
change the positions of the sources and the sinks and
also of the critical points.

If Z=2(z,) is a multivalued function giving the critical
points Z in terms of the sources and sinks z,, it is ob-
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FIG. 2. A maximal bichromatic
multigraph with four vertices.

tained by solving the condition for the critical point:
(df/dz)=0, with f=1ogF. If we now consider f(Z, z,)
with z=2(z,), we get

df=<al_a£+ﬂ_>dz‘=aanldzp (3.3)

97 oz, 9z,

because (8f/92z)=0 as z is a critical point. Hence for
stationary critical values the infinitesimal transforma-
tions of the poles and zeros dz, must satisfy the con-
dition

ez 4

5z, (3.4)
where z is obtained from the solution, in z, of
9f(2, 25) _
- =0. (3.5)

If F(z, z,) is factorizable into its sources and sinks, as

in the case of an algebraic function
F(z,z,)=11F (2, z;), (3.6)

then the critical point is given by [with F = (3F,/0z)]
LIFfz=2)/Fz-2)]=0, | @

and the condition for weight-invariant transformations
becomes

YFyz-2)/F{z~-2)]dz;=0. (3.8)
All linear transformations
zi—’azi+b’ (3'9)

where a and b are complex constants indicating trans-
lation, rotation, or dilatation of the PCD on the complex
plane, keep the weights invariant. This reduces the
number of parameters of the function from 2V + 2 (where
V is the total number of vertices) to 2V - 2, indicating
that many other solutions to Eqs. (3.7) and (3. 8) re-
main outside the class given by the transformations of
(3.9).

The only nontrivial Betti number of a graph is the
number of faces F in it. As we have seen before, this
is equal to the number of saddle points of the phase, in
the absence of any degeneracy resulting from symme-
tries or other special relations between the strengths
and positions of the zeros and singularities of the func-
tion, and preventing the graph from being maximally
connected.

Theorem 3.3: For a maximally connected bichromatic
multigraph we have for the number of faces F=V -2,
where V is the total number of vertices of either color.
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The proof is by induction. We have seen in Lemma 3.2
that the circumference of a maximally connected bi-
chromatic multigraph contains one vertex of each color.
If a2 new vertex appears outside this graph, it can be
connected to the vertex of opposite color by two homo-
topically distinct arcs, which, together with the two
arcs of the previous circumference, form the four edges
of a new quadrilateral face. With V=4 we get F=2, as
can be verified by explicit construction. Hence, con-
structing graphs with V >4 by adding new vertices and
consequently faces from one with V=4, we get the
general relation F=V -2,

4, PHYSICAL CONSTRAINTS

Our discussion of the PCGs in the previous section
was mostly concerned with algebraic functions with
similar Riemannian sheets. Models for the scattering
amplitudes with only meromorphic functions exist,
which satisfy important constraints like asymptotic
Regge behavior, crossing symmetry, direct and crossed
channel poles (though on the real axis of the single
sheet). Unitarity involves the introduction of branch
points of nonalgebraic nature—except the elastic branch
point. !¢ However, treating the cuts as effective sinks and
sources according to the amount of phase leaking into or
out of them, it is 'possible to consider only the physical
sheet or a submanifold in it instead of the complete
Riemannian surface and apply some of our results to the
subgraph belonging to this region.

A. Symmetries and factorization
We make the following observations:

(a) Hermitian analyticity—A(S) = A*(S*)—makes the
PCD on the physical sheet, and hence the PCG on this
sheet, symmetric on reflection by the real axis. Only
the labels of the P, change.

(b) Other symmetries may exist, giving left—right
symmetry of the graph; e.g., the crossing symmetry
of the A’* or B~ amplitudes of 7N scattering or the 7°°
scattering amplitude. Crossing antisymmetry as in A’-
and B* sN-amplitudes would also produce symmetry on
either side of the imaginary axis.

Theorem 4.1: Every reflection symmetry of the func-
tion leads to an increase in the number of components
of the graph and the appearance of a degenerate critical
value contour.

Proof: Let S be the line of symmetry dividing the
graph G into identical subgraphs A and B. We prove that
A and B are disconnected. If any arc connects A and B,
it must either be symmetrical itself under reflection on
S, or have a symmetrical partner. Since an arc (which
represents a phase bundle of finite thickness) can con-
nect only a source with a sink—by Lemma 2. 2—reflec-
tion symmetry rules out a symmetrical arc. Similarly,
a symmetric partner is made impossible by planarity.
Hence A and B must be disconnected components of the
zraph of the function. Since no phase bundles cross S,

3 itself must be a phase contour, say with phase ¢.
Even if A (or B) is maximally connected, its periphery
nust contain a source and a sink (from Lemma 3. 3).
The phase contours with phase ¢ from these singulari-
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FIG. 3. Reflection symmetry: the subgraphs A and B are re-
flection symmetric with respect to the line S.

ties must be connected with S, because (by Lemma 2.1)
all phase contours must have sources and sinks as their
limit points. Hence S must be part of a contour with at
least six components (Fig. 3). By Morse theory, a non-
degenerate critical value contour can have only four
components. So S must be a part of a degenerate critical
- value contour. The critical points can be either distinct
or coincident. By the same arguments, it can be proved,
in the case with vertices on the symmetry line, that
though the graph does not split into disconnected com-
ponents, it ceases to be maximally connected.

The existence of symmetries indicates the possibility
of factorization of the amplitude into functionally similar
components. Let F(z) be a crossing-symmetric ampli-
tude, i.e., F(z)=F(~-z). We can write the phase
representation’’

F(z)= g,i[(z -z )Nz +2z)] exp(g [” 6(zl)dz;), .1)

[(z -2, )(z+2,)] T z-72

where zz; are the zeros, zz; the poles, and 6(z’) the
phase of the contours leaking out of the physical sheet
through the cuts. In Eq. (4.1) we can see that F(z)
factorizes into f(z) and f{- z), with the two symmetric
branch cuts and the symmetric poles and zeros separa-
ting into the two factors in any complementary
combination.

However, factorization of the amplitude does not in
general lead to factorization of the graph into subgraphs
corresponding to the factors. Because of the require-
ment of planarity, the graph of a function must be dif-
ferent in general from the superposition or any simple
interconnection of the graphs of its factorial components.
Connectivity, being a global property, depends not only
on the individual strengths of the relevant sources and
sinks, but also on the nature and position of all other
sources. We mentioned towards the end of Sec. 3 how
the weights of the arcs of the graph of an algebraic func-
tion are controlled by the positions and strengths of all
the sources on any sheet. For a more complicated func-
tion like the scattering amplitude, where each sheet is
expected to have a different pole—zero structure, the
poles and zeros on other sheets influence the weights of
the arcs on the sheet of interest in a complicated way.
On the other hand, we know from the phase representa-
tion that the amplitude is fully known on the physical
sheet if its poles and zeros on the same sheet and its
phase along the branch cuts of this sheet are known.
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Since the full content of analyticity is contained in the
branch cuts, the weaker topological constraints on the
PCG’s can also be obtained by replacing the cuts (and
therefore the connected sheets) by an effective combina-
tion of sources and sinks with strength related to the
phase leak into the cut. If there are no oscillations in
the phase along the cut, then obviously a single source
or sink would suffice for the whole cut. In the presence
of oscillations the cut may act as a source or a sink
locally, but, if the scale of such oscillations is small
compared with the distance between the zeros and poles,
we may take semilocal averages and reduce it to a sin-
gle vertex of an effective strength.

B. Periodicity and infinite graphs

Periodic pole and zero structures in amplitudes in-
duce periodicity in the PCG’s with simplifications re-
sulting in interesting predictions. Zero width dual
models provide a nontrivial test case. However, the
linearity of the graph destroys all faces and removes the
possibility of obtaining some knowledge of the nondegen-
erate critical points, which undoubtedly exist in the
physical amplitude and would appear in properly uni-
tarized models, though at the price of breaking exact

"linearity and periodicity.

Let us take a function F, with poles along the real axis
at x,=x,+ia [i=0,1,2,..., %], and zeros also along the
real axis and with the period b, x;,=x},+ib [
=0,1,2,...,%]). If a=b, we shall have an infinite linear
graph (Fig. 4) with alternate poles and zeros, except
for a possible sequence of only poles or zeros at the
finite end. At sufficiently high z values we can expect
the end effects to be minimal and the weights of the arcs
connecting adjacent poles and zeros to settle down to
constant values depending on the separation between
adjacent poles and zeros. That there are no arcs going
to the point at infinity from the vertices far from the
finite end can be visualized as follows. If we take a
large circle with its whole circumference far from the
finite end and with equal numbers of poles and zeros in-
side, then because of the constancy of the arc weights
w, and w, (Fig. 4) the net phase leaking to adjacent
vertices will be zero. Consequently, because of the
equality of poles and zeros within the circle, the amount
of phase going to infinity will also be zero. Hence we
must have w, + w,=2n. The power behavior at infinity is
essentially determined by the uncompensated zeros or
poles at the finite end as well as some phase leakage to
infinity from all vertices near the origin. If we sum the
total weight a from all the poles and zeros, except the
point at infinity, with a, equal to the number of unpaired
Zeros or poles,

a=a,+1-1+1-1+..-, (4.2)

The sum of the series is indeterminate but bounded be-
tween o,+1 and a,. If we use the factorized form for
the function, then

oz~ 25 -na) _ ., Dl(x/a)~(2/a)

F=Cq e=xo=ma) ~ ' T(ya)=(z/a))’

(4.3)

with C* =Ca?, k being the integral part of (x, - x,)/a.
This has an asymptotic power behavior off the real axis:
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FIG. 4. Periodic linear graph with alternate poles and zeros.

F(2) ' (2/a)5o0a
where the index is actually the number of unmatched
zeros at the finite end together with a fraction indicating
the leakage of phase bundles from the nearby matched
pairs as an end effect. That the analytic method is more
powerful and gives the exact index, compared with the
partial indeterminacy of the graphical method, can be
expected from the fact that the latter does not use the
separation between the zeros and the poles, but only the
number of the excess. This uncertainty could possibly
be remedied if the weights could be calculated without,
of course, using full analyticity properties. However,
as we have already seen, the exact weights of arcs can-
not be determined by only graphical and topological
means, because different functions may have the same
graphs but different, or even the same, weights. The
constraints from periodic symmetry would work only for
vertices away from the finite end.

(4.4)

C. Unitarity and asymptotic behavior

We have just seen how even a purely meromorphic
function could have a nonintegral asymptotic power be-
havior due to an infinite number of poles and zeros. An
algebraic function also, in general, must have noninte-
gral power behavior, because the source or sink at the
point at infinity must be equal and opposite in sign to the
algebraic sum of the strengths of all the sources and
sinks in the finite plane, on each sheet as the sheets are
identical.

For a scattering amplitude the nature of the branch
points are generally unknown. From the unitarity equa-
tion it can be shown!® that the elastic branch point is of
the square root type. The other branch points are ex-
pected to be infinite-sheeted, with no symmetry to make
the PCD’s on different sheets identical, as in the case
of the purely algebraic function.

However, we can still think of the total phase flux
moving out of the physical sheet into the branch points
or into the singularities of the unphysical sheets to be
absorbed by an effective sink. For an amplitude without
any Born poles and with identical left- and right-hand
cuts, e.g., the symmetric pion—pion amplitude
A(7°7° — 7%7°), we get a very simple PCG (Fig. 5) with
two equal effective sources representing the two cuts,
and one at infinity that balances them and gives the
asymptotic behavior. For 4m2>¢ >0, the imaginary part
of the amplitude must remain positive throughout the
cuts. Hence phase can vary, at most, from 0 to 7 over
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each side of a cut, giving each cut a maximum possible
strength of @ =+ 1. So the sink at infinity has, at most,
strength o =-2. Or,

A(s, 1) =572, (4. 5)
as |s|—w; 0 <¢{<4m?2. This result is identical to Jin and
Martin’s’® classic lower bound on the scattering ampli~-
tude. However, we have ignored the possibility of loga-
rithmic terms, either at infinity or over the cuts. It is
only to be expected that such a simple qualitative ap-
proach, which does not employ dispersion relations or
the properties of Herglotz functions, !° cannot be as
powerful as Jin and Martin’s more detailed analysis.
Nevertheless, a graphical picture does give us a more
natural insight into the result which can be hidden in the
details of analytical calculations.

5. CONCLUSIONS

We have tried in this work to indicate the topological
aspects of the phase contour method for the analysis of
scattering amplitudes, with some help from the results
of Morse theory. Altbough the difference in the topologi-
cal nature of ordinary contours and critical value con-
tours is well known from Morse theory, we have been
able to show also that this difference in the homotopy
types in the simple case of a one-dimensional complex
manifold leads to the different components of a unique
graph representing all topologically equivalent phase
contour diagrams. We believe the phase contour graph
is easier to handle mathematically and should provide as
much qualitative, particularly combinatorial, informa-
tion regarding links between zeros and singularities of

.the amplitude as the full PCD. Observing that such a

graph must in general be a maximally connected bichro-
matic multigraph, we found numerical relations between
the number of poles and zeros and the number of critical
points of an algebraic function on any sheet. We also saw
that periodicity can give us simple predictions about
asymptotic behavior, and in the case of the physical
scattering amplitude, unitarity can constrain the
strengths of the vertices representing the cuts and hence
the asymptotic power behavior—a result previously ob-
tained by Jin and Martin using dispersion relations. We
have observed how the number of components of the
graph can indicate the presence of symmetries of the
function in the complex plane.

Although the use of PCG’s is intuitive and heuristic
and the results obtainable from it are only qualitative,
this method probably concerns the more basic aspects
of the scattering function and avoids the manifold prob-

LHCO— % —ORHC

FIG. 5. PCG with two cuts and point at infinity.
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lems of detailed quantitative analysis. However, the full
power of Morse theory and the topological aspects of
PCD’s can probably be felt in the multidimensional case,
e.g., for production amplitudes with zeros and poles in
many complex variables, with higher dimensional
simplicial complexes generalizing the concept of phase
contour graphs.
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Limits in systems exhibiting a one-dimensional phase

transition
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Recent spherical Ising models by Strecker and Gersch which exhibit one-dimensional phase
transitions have shown that at the critical temperature € - y2/3, whereas inside the one phase region

e_y>

The models were unable to shed light on the behavior of this function as it passed through the

vapor dome. Speculation might lead one to believe that a new type of singularity is present. Instead,
we show that the exponent continuously changes from 2/3 to 2. A simple cubic polynomial controls

the behavior of the € function.

1. INTRODUCTION

Interest in one-dimensional phase transitions is found
in a number of fields, namely, superconductivity, polymer
chemistry, thermodynamics, and statistical mechanics.
Recently there has arisen the possibility that a new type
of phase transition may be in the offing.

The topic of one-dimensional phase transitions is im-
portant in the theory of superconductivity where recent
discussions have taken place as to whether a whisker
can become superconducting,! Further, there is interest
in Little's2 work on long chain polymers which may be-
come superconducting. These long polymers often are
basically one-dimensional systems.

Using purely thermodynamic arguments, Landau and
Lifshitz3 show that long range order is not possible in a
one-dimensional system with finite range forces. Their
arguments are relatively simple and employ thermo-
dynamic potential functions.

From the point of view of statistical mechanics
models which undergo a phase transition in one dimen-
sion are of interest especially because proof or evidence
for the existence of one-dimensional phase transitions is
still inconclusive, Existence or nonexistence depends
markedly upon the model employed. We do have Van
Hove's4 famous work wherein he shows that a one-
dimensional system cannot exhibit a phase transition if
the forces are of finite range. But even when one goes
to long range forces the results as to whether there will
be a phase transition depends upon the model. The deli-
cate nature of this type of transition is appreciated when
one makes a comparison of various similar models; the
Kac model5 gives no phase transition whereas those of
Kac, Uhlenbeck, and Hemmer,6 and Strecker? and
Gerschg do.

Recently Thouless? and Dysonl0 have argued—not
rigorously—that a phase transition of a completely new
kind will possibly arise in a one-dimensional system in
which the strength of the interaction behaves as 72,
Some models, notably that of Carpenter and Strecker,11
which do exhibit one-dimensional phase transitions have
interactions which behave asr %, 1 < a < 2;a = 2 re-
mains elusive and generally poses an unsolvable problem.

We ought also to mention recent work by Anderson and
Yuvall? in which a one-dimensional model has analogs
in the Kondo effect.

One of the unsolved problems in the work of Gersch$8
and Strecker? is the behavior of the limiting function
€ = y2/3 and € = o2, the behavior of the function as one
transverses through the point which marks the onset of
the phase transitions. It is the work of this article to
examine more closely this function and to prove that the
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function is basically a simple cubic polynomial (Fig. 1)
which displays a continuous behavior as one moves from
the one-phase region into the two-phase region.

These works by Strecker? and by Gersch8 show the
existence of a one-dimensional phase transition and the
manner in which the transition arises due to the peculiar
behavior of the saddle point. For both of these models, a
normal saddle point exists for all positive values of the
temperatures. In both models, the range of the inter-
action between elements of the system is specified by a
parameter 1/y. The phase transition occurs at a critical
temperature T, as the range of the interaction becomes
infinite (y — 0).

If y # 0 the following applies. As T — 0 the saddle
point approaches a limiting value z, that is independent
of y. Let € be the difference between the saddle point z
and the point z,,. Then both Strecker and Gersch found
that € was proportional to y2/3(e ~ 42/3) at the critical
temperature 7, and € was proportional to 42 when the
temperature was well below T.. There was no evalua-
tion to show how the exponent of  went from 2/3 to 2 as
the temperature dropped below 7.

¥(x)
%(x)

FIG.1. Behavior of curve y(x) = x3 + Ax — B where x = ¢l/2, yolx) is
¥(x) for A = 0. y(x) has a single root and y,(x) has an inflection point at

x = 0. For A = 0 the linear term Ax (dotted line) is superimposed on Yolx)
to produce y(x) (broken curve), The different rates at which € - 0 for both
regions T = T, and T < 7, are continuously produced.

c
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The behavior of the function in the intermediate region
has been left unsolved; in the past the function describing
this behavior could not be evaluated as one passes con~
tinuously through the transition region.

In this article we show that the behavior of the function
is a smoothly continuous function and we show how one
passes continuously from the o2 behavior well within the
transition region to the behavior when the thermodynamic
parameters are exactly at the vapordome (32/3), The be-
havior is not one of the sharp singularities as we might
guess, but a smooth function, a simple cubic polynomial
(Fig. 1).

In this paper we will use the spherical Ising model of
a one-dimensional spin system developed by Berlin and
Kac13 with a square well interaction between spins, The
“width” of the square well will be m lattice sites and its
“depth” will be J/m. The range parameter correspond-
ing to 1/y above is m. The quantity € for this model will
vary like m~2/3 at T = T, and m~2 for T < T, in exactly
the same fashion as in the model of Strecker and Gersch
(replace 1/y by m). We {inally obtain an expression that
explicitly shows how y varies continuously from m-23 to
m~2 as T decreases from T,.

2. SYNOPSIS OF THE SPHERICAL MODEL

The partition function for the spherical modell3 is
given in Eq. 2.1, (We assume everyone is familiar—at
least remotely—with the approximations and assumptions
which lead to Eq. 2.1.)

z =B [0 ggens n <—L—>m
2mi -1°° S — zﬁh
~1 +i

= A7 e [0 45 exp (NS ~ 32 In(S — %ij> .

27i Qg0 Jj

(2.1)

We will now define

M =20/A; and  S= 3Bz, (2.2)

Then in terms of these quantities, (2. 1) becomes

1 1 1 /XX l
32 i ()]

20, 2 lﬁ
X2 = — —BAy = 2.3
T E. By 2o (2.3)
Next define
f@) = tm L% mfe — 2
z im — n{z — —A’,
Moo NjZ2 2 7
and ) (2. 4)
8(z) = Pr 2z — 3 f(2)
For N large, (2. 3) becomes approximately
Al 1 BAY
=—aN2 _Bx, exp|—— In
gmi |z XP[ 2 ( 2 ﬂ
xf o” dz(z — 1) 12N (2 5)

Z ~ico
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The evaluation of the function f(z) will be carried out
later in the sections devoted to specific models.

The integral in (2. 5) can be approximated by the
method of steepest descents if a saddle point z, can be
found. The evaluation by the method of steepest descents
yields

2 Al " lﬁ?\ N1 BA;
2ni 1 &P 2 2

27 1/2
X (g,— 1) MRjgNetag) | ———
¢ Ng" (29

BAT(N/2) N BA,
= INGDED exp 3 In 2—) + Ngl(z )

X [2aN(z, — 1)g"(2,)} 12 (2.6)

where the saddle point z , if it exists, satisfies the con~

ditions
g'(z)=0 and g"(z,)>0. 2.7
In terms of the function f(z), (2.7) is
Br;=f'lz;) and f"(z)< 0. (2.8)

The saddle point will turn out to be real. If must also
be greater than 1 because the real part of z in the inte-
gral (2.5) was restricted to be greater than 1.,

To calculate the thermodynamic properties of our sys-
tem in the limit as N— ©, we will use the free energy
per spin ¥ defined by

~ ¥ _jim Lz,

2.9
RT N@oo N (2.9)
Using (2. 6) in (2.9) we obtain
¥ 11 a2
—— - In— + -5 — .
kT 2 2 kT 2rT f(z )- (2.10)

From ¢ we-may obtain the energy, entropy, and specific
heat per particle by differentiating.

U = kT2 —d—<~ —‘3—> , (2.11)
dT \ kT
c=% (2.12)
dT
S=_ (2.13)
dT
Using (2. 10) in (2, 11) gives
1 A2 A, dz
U=pr2|— - L"s __1_____f( )___
2T 2T2 2kT dT
= 3T — 2, (2.14)

where the two terms containing dz /dT in the first line
cancel because of (2.8). Then (2. 12) shows

dz
C=3sk— gxld—Ti. (2.15)
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Equation (2,13) is
A dz
S=—1ib—pIn L+ Llp+ Ly
ek —gkIno+ 2k + oy

1k sRTf! %,
— zhf(z,) — 2RTf (”S)EF

1 A1 1
=— 3k m;e—; — zkf(z). (2.16)

The dz,/dT terms cancelled because of (2. 8).

3. SQUARE WELL POTENTIAL

The square well potential is a modification of the
nearest neighbor interaction. Each spin site interacts
with its nearest m neighbors on either side while the
interaction energy between a pair of spins is decreased
by the same factor m. On account of this, the total
energy per spin with all spins aligned is a constant in-
dependent of » and is the same as in the nearest neigh-
bor case (m = 1), This energy will be — J with J posi-
tive,

The energy of a spin configuration for this potential
is given by

1
- E’EM”€Z€

N+j+l-i»

i=2,3,....m +1,NNN—1,.. ., N—m + 1

§|t. 0

S

C, =
0 otherwise

i

At first sight, this system appears to approach the
ideal case of noninteracting spins in the limit of m —
since the interaction of a spin with its neighbors goes to
zero, However, our model will be shown to undergo a
phase transition at the temperature

T, = 2J/k. 3.1)

The reason for this nonideal behavior is the existence
of a nonzero potential energy per spin that doesn't
vanish even as m — ©, The critical temperature 7, is
the temperature at which the thermal energy per spin
kT equals the energy J.

Due to the development in Sec, 2, the problem of de-
ducing the thermodynamic behavior of our model has
been reduced to finding the saddle point z, satisfying
(2. 8) and the function f(z) and its derivatives. The re-
normalized eigenvalues of the interaction matrix M are

2 & 27
A= =05 cos—(k—1 3.2
iy Nj( ) (3.2)
From (2, 6) the function f(z) is
fz) = 11m——Z) ln<z—— 2, cos "_(k— 1))
m j=1 Nj
which becomes
2 1 7
fle) = 51; fo "dw In (z - jZ=>1 cosjw)
f dw 1n <z - = Z} cosnv) (3.3)
m j=1
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This integral cannot be evaluated in closed form so it
will be approximated in Appendix B. The results show
that

Inm

fz)=Inz + — C(Z), (3.4a)

where ¢(z) is a function of z and 7 and can be bounded
independent of z and 7. When we speak of bounding a
function independently of z, we are speaking of z real and
greater than or equal to one, Also,

Inm
| 2% )| < 1 (3. 4b)
for z sufficiently large.
The saddle point Eq. (2. 8) for this model is
1 1z N\t 2
=~ [dwl{z —= cosjw| = =— 3.5
T ‘é <s mj§1 7 ) kT’ @.5

where we obtained f’(z) by differentiating (3. 3). In (3. 5),
the integral cannot be evaluated in closed form. The left
side of (3.5) must be approximated. The details of this
approximation are carried out in Appendix A. The
results are

1 1 7 a \ 12 () 2J
—_—t e tan-1| — | —— +— =,
z, malz, —1) m\z, — 1 m kT

(3.6a)
where 7(z) is a function of z and » that can be bounded
independent of z or m, Also,

1__tan-1[1<;e_>1’2] #26) cL
wa(z — 1) m\z—1 m z2

for z sufficiently large. For future ease of discussion,
we will give each of the three terms on the left side of
(3. 6) its own number.

(3. 6Db)

1 (3.7a)

ZS

né) (3.7b)
m

(3.7c)

SRS S tan—l[l( a )UZ].
1n/oz(zs —1) m\z,—1

By (3. 6b), we see that a first approximation to z, is

2, =kT/2J (3.8)
for 2J/kT < 1. This approximation is actually quite
good for values of T very close to the critical tempera-
ture 7,. We will prove this statement in the following
paragraphs.

We define the temperature 7' by

2J/kT =1 —m=28, 3.9)
The exponent — 2/3 on the m is chosen for later con-

venience, The approximations we will develop for 7" >

T’ and T < T’ will have the same order of magnitude at

7' when T’ is defined by (3.9). We now contend that (3. 8)

is a first approximation for all T = 7/, This is proved

by the use of the following self-consistent argument.

Assume for a moment that (3. 7a) is the only sizable
term in the saddle point equation (3.6a) for all 7 = 7",
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If this is true then (3. 8) really is a first approximation
to z,. The saddle point equation is approximately

l/zs = 2J/kT.
For T = T’ we have by using (3.9) in the last equation

2J o 2J
kT kT’

1 = =1—m23
zs
or
z2,> 1/(1 —m=28) = 1 + m~2/3,

Then z, — 1 > m~2/3 and we have for (3.7c)
1/2
1 a7 (@ <
waz, — 1) m\z, —1 2V(tm2)(m-2/3)

= (i) 2,
2

where we replaced the arctangent by its maximum 7/2
and o by its approximate value §m2. For large m, this
is clearly negligible compared to (3.7a). Term (3.7b) is
also small since 7n(z;) is bounded. Hence, for T = 7", the
neglect of (3.7b) and (3. 7c) introduces an error of at
most order m~2/3,

If we assume for 7 > 7' that (3.'7b) and (3, 7c) behave
like ¢/z2 in accordance with (3. 6b) where C may depend
on m but is of order m0 = 1,'then a slightly better
approximation to the saddle point z_ than (3. 8) may be
obtained.

For these large values of T, the saddle point equation
is nearly

Multiplying through by zs2 and solving the resulting
quadratic equation gives z_ = {1 + [1 + 2c(2J/kT)]1/2}/
[2(2d/kT)). Since 2J/kT < 1, the radical may be expand-
ed by the binomial expansion and the approximation
z, = (kT/2J) + C obtained. This result may be obtained
more easily by writing the saddle point equation in the
form

z,= (kT/2J)[1 + (C/z,)]

and reiterating the first approximation (3. 8):

Zs:—k—z 1+ CH ::k—T-+C.
2J 2J 2J

In the region where T is close to 7’ but is larger than
T’ we can get another improvement on (3. 8). In this
region of temperature (3, 7c) is much larger than (3. 7b)
even though it is still much smaller than (3.7a). The
argument of the arctangent is large so we may set the
value of the arctangent to be 7/2, The saddle point
equation is approximately

(3.10)

1 1 2J

e = B
Z Nalz,— 1) kT

S

Since the second term on the left is much smaller than
the first one, we will rewrite the equation in the form

kT 1+ z,
Z = — [ A—
S 2g HNa(z, — 1)
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and use (3.8) and the method of successive approxima-

tions to obtain
ol BT 1 - 1/2
2J

Z:k—T].-l-iez
S 2Jd 4J

valid for 7 = 7’ and near 7T'.

(3.11)

Now we are ready to consider the region 7 < 7",
Since 2z, will be within a range of about 72/ of 1 and
n(z,)/m is a relatively slowly varying function of z_, we
will replace this term by its value at z = 1, The argu-
ment of the arctangent will be much larger than 1 so that
we will use the series

ta.n‘lx—_—l——1—+1 1 ,
2 x 3x3 5x3

x>1  (3.12)

in (3.7c). The saddle point equation (3. 6a) becomes
1_'_17(1)+ 1 T mfz, — 1\ 12
2 m wo, —1) |2 7 a >

1 (m)\3(z — 1\ 32 2J
+ | — —eee]| = —
3\7w o kT

Define € by the equation

(3.13)

g, =1+¢€ (3.14)

and substitute this in (3.13). We already know that the
largest value € we may obtain is something on the order
of m~2/3, Therefore, we may use the binomial expansion
to write 1/z_ in terms of €, Then (3.13) becomes

1) 1 (7 mfe\12
1—€+€2—"'+I]—(—+— —— ==
m Was[z 17(01)

3 /2
+L{m\3(e\32 .
3\7 o
If we multiply through by €12 and collect like powers
of € together, we have

_1_+€172<1._2_J+n_(12___niz>_€3ﬂ (1_m_3>

_2J
kT’

o BT m  an 3a274
1 m \ 2n+l
F oeee + (— Dre@nl)/2|1 —
b [ 2n+ 1)1[‘/71- (mf&) ]
+ e =0, (3.15)

First look at the general term

 {yre@nen/2 |1 — 1 m_\ 2n+1
(— 1)¢ 12[1 (2n+1)1n/3(m/5> (3.16)

for » = 2. The second term in the brackets is seen to
always be of order 1/m since a is approximately im2,
Therefore, the 1 in the brackets is the largest term by
far, The magnitude of the entire term is then deter-
mined by the factor €2»+1/2, We already know that for
T < T’ that € will be smaller than a quantity about the
size of m~2/3, The higher order terms form an alter-
nating series and since the magnitude of the terms in
this series is decreasing, then the total contribution has
an absolute value smaller than that of the first term.
The first term is m(6/2¢2/3) = y-5/3 or smaller in size.
We will see shortly that this is #7-1/3 smaller than the
smallest possible value of any lower power of €. There-
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fore, we will neglect the terms in €52 and higher in the
saddle point equation., The dependence of € on the temp-
erature will be essentially determined by the terms up
to order €3/2,

The €3/2 term has the same form as the general term.

Approximating o by §m?2 gives for this term

_ 63/2 1 — _]_'_2_ .
mud
This term will be larger than the neglected terms by
a factor of 1/€ which will be at least m2/3,

(3.17)

The term in €1/2 is

el/z l_gi+ﬂ@__6_
mu2)’

kT m
a was replaced by gm2, This term is larger than the
neglected terms by a factor of about

(3.18)

J

el/2 — _1__21/24' i_{_}_ _2_J___1+_6___.7,7_(_1.,
2m\ 2 8m?2 2T\RT mm2 m

)]
Al®) o

1812

_1<1_2_J_+n@__6,)_

€2 kT m mn2

The expression 1 — 2J/kT can have a magnitude any-
where from 0 to ©. The largest value of € is about m=2/3
so that we can see the smallest possible size of this
term is larger than the neglected terms (3.16) by a

factor of m1/3 if we assume that (1)/m — 6/m72 is of
order m0 =1,

We will show shortly that the results are not much
changed even if n(1)/m — 6/m72 = 0.

The constant term 1/2Ve = (3)1/2(1/m) is clearly
much larger than the neglected terms.

The saddle point equation is essentially

2 4 /220 _ 4, 6 1) __1_\/§=o (3.19)
kT mm2 m mY 2

when all the negligible terms are discarded, This is a
cubic equation in €1/2 whose real solution is

3]1/2)1/3
+1f2d_ 4, 8 a0) (3.20)
2T\kT mu2  m

This equation show the dependence of the saddle point
on the interaction range m and the temperature T for
T<T1T.

At the temperature 7, defined by (3.1), 2J/kT —1=0,
and by Eq. (3. 20),

1 ,3\v3
61/2 ~ [ 2 il
or

€ = i 1/3m—2/3_
2

€ is proportional to the — 2/3 power of m. Even if
n{l)/m — 6/mu? = 0, these results are not changed.

On the other hand, if 2J/kT — 12> m~2/3 then this
term becomes the significant one in (3. 20). In this case
€ will be much smaller than #-2/3 and an approximate
value for the saddle point can be obtained directly from
the saddle point equation (3. 19) by dropping the 3/2
power of € from the equation. This term is negligible in
this case.

(3. 21)

The approximation yields
€ = _3_ / Z_J__ _
2/ \kT

which shows that € is proportional to m-2,

(3.22)

These results, that € ~ m~2/3 at the critical temper-
ature and € ~ m~2 sufficiently below the critical temper-
ature, were previously obtained by Strecker,? In his
paper, it was shown that € ~ 12/3 at the critical temper-
ature and € ~ 2 below the critical temperature (where
1/ corresponds to m in the present paper) but the
means by which the exponent changed from 2/3 to 2 could
not be obtained. Equation (3. 20) shows how this trans-
formation takes place in terms of m.
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To summarize: The width of the m-2/3 behavior of €
can be estimated from (3. 20). € will go like m~2/3 ag
long as the term containing 2J/kT — 1 is very close to
zero. If 2J/kT — 1 becomes of order m~2/3, then the
cube of this term compares favorably with the term
3/8m?2 inside the square root. ¥ 2J/kT — 1 increases
beyond this point, then this term becomes the largest
one and the exponent of m moves toward 2. The width
of the m~2/3 behavior is therefore the range of tem-
peratures for which 2J/kT — 1 Sm=2/3,

The thermodynamic functions can now be computed
using the various approximations for the saddle point in
the different temperature regions. Care must be exer-
cised in using these approximations so that one does not
go beyond their domain of validity, The procedure is
relatively straightforward., We can use the approxima-
tion (3.10) in (2. 22) to obtain

U=3kT—JET/2J + C)=— CJ

for T > T'. This shows that our assumption that C is
constant in (3. 10) is incorrect, It actually approaches

0 as T — «, This is true because when the spins are
completely randomized at high temperatures, the energy
per spin will be zero,

For T < T,, we would use (3. 22) in (2. 22) and obtain

U=3kT—J[1+ (3/2m2)(2J/kT — 1)°2]
= kT — J + orders (1/m?2),

This actually holds up to a temperature very close to
T, when m is large, Similar considerations for other
temperature ranges shows that the energy in the limit as
m >0 is

kT —J, T<T,
U= .
0, T>T,
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The specific heat for this limit is

ik, T< T,
c= .
0, T>T,

The discontinuity in the specific heat occurs at the
transition temperature T,.

4. CONCLUSION

The spherical model of a one-dimensional spin system
with a square well interaction clearly shows a phase
transition. The behavior of the saddle point as a function
of the interaction range m is very similar to the saddle
point behavior in the models of Strecker and Gersch.
These behaviors are € ~m2/3 at T, and € ~ m~2 for
T < T,. The change from m~2/3 to m~2 could not be
observed in the models of Strecker and Gersch. In the
present model, an expression is obtained which shows
this transition.

APPENDIX A: THE SADDLE POINT EQUATION
In this appendix we approximate the function

f’(z) = -1-];— foﬂ dw[z

defined for all real z > 1 and derive some elementary
properties of the saddle point which is the solution of

m -1
f’(zs) ='7];—f0“dw (zs - i E COSjO.> = 'Z—j?y

1 m -1
-=2 cosjw] (A1)

mj=1

(A2)
m j=1

which is equation (2. 16) with x; = 2J,

First of all, the saddle point is a monotone increasing
function of the temperature, This is seen by differentia-
ting both sides of (A2) with respect to 7 and solving the
resulting equation for dz /dT.

dz 29 1 1= -2
= . foﬂ dw(zs ~— 2 cosjw> . (A3)

dT kT2 T m j=1

Since z_ > 1, the right side is positive. We will show
shortly that the integral (Al) increases without bound as
z—1* (2 1 and z > 1), Also, the right side of the
saddle point equation (A2) blows up as 7 approaches
absolute zero, From the comments in this paragraph we
then see that as the temperature rises from absolute
zero, the saddle point, z_, increases monotonically from
the value 1,

For z much greater than 1, the function f’(z) appro-
aches the function 1/z. In fact, from (A1) we have

]%foﬂdw( ——Z} COS]O))_l —i—l

m j=

-L|fawl(i-L 5 cosjw)'l -1

1 1 1
<=/ dw 1 == — 1}, A4
el =My
where we have used the fact that
m
lZ} cosjw = 1, (A5)

m j=1

Equation (A4) places an upper limit on the difference
between f'(z) and 1/z. It is valid for any z > 1 and shows
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that as z = 1, f'(z) doesn't blow up faster than 1/(z — 1),
For z > 1, (A4) shows that the difference between f'(z)
and 1/z is less than a quantity of order 1/z2,

We will be primarily interested in the behavior of f'(z)
in the neighborhood of 2 = 1. This is because for m
large, f'(z) approaches 1/z very closely when z is only a
small distance from 1. The unboundedness of f'(z) as
z = 1 is squeezed into a very narrow band about z =1
as m — «©, This behavior, as we shall see, is responsible
for the phase transition in the limit as m — «©, This type
of result has already been obtained by Strecker.? To
simplify the determination of f’(z) in the neighborhood of
z = 1, we will define

) n/m 12 A\
1@ =— | dw<z —1—01—]2:)1 cosyw) . (A6)
and
5 @) =lf1r dw(z —iin) cosjw) ' . (A7)
T “n/m mj=1
Then
f@) =/'(2) + f3(). (A8)

First consider f/(z). In the interval [0, 7/m] we will
represent 1/m ) 5-1 cosjw by a power series,

L5 cosjw=L3 % x5 pyxa,
mij=1 m j=1 K=0 2K)! k=0
(A9)
where
=.l w2E 2 -
K m@K)! =1

For each 2,4, >0, 1/m ) 7, cosjw is represented
by an alternatmg series,

For 1 =j = m we have j2(4+D = 22K, Therefore,

m ia
D jAED 237 2K
j=1 j=1

m m
> ja&sD/ E 2K 2,

With this result we see that

w2k m

2(K+1)
A1 = 1 o 3 (K+1)/ j2K
Ay  m [2K+ D] j=1 m (2K)! j=1
m2w? 2
< < <
@K + 2)2K + 1) (2K + 2)(2K + 1)

Then (l/m)Z)j';'1 cosjw is represented by an alternat-
ing series, the magnitude of whose terms is decreasing.
On account of this, it is bounded above and below by any
two consecutive terms in the power series.

In particular,

lm
1—aw?2= =) cosjw =<
m j=1

oz:l mz+§m+l ,
6 2 2

1 — aw? + Bw?

(A10)

B=-L (mt+3ms4Bp2_1
120 2 3 6
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With the bounds (A10) we can deduce
l
1 f K mdw__l___
z—1+ aw?

<file) = —f"/’”d 1

z—1+ aw? (A11)

By integrating we get

[1/7Va — 1)) tan'l[wVa/ — 1)]|g/m
= /&) = {a]a2 + 4B(z — 1)]V2}2

[
i (3T
oG-l
)-8

X tan” {w/[<432 zB— 1)1/2 "f;}] 1/2}]

and after inserting the limits of integration and re-
arranging,

n—t{@(z_?ﬁﬁ ta“'l[‘z‘,(z = 1) 1/2]} =RE =
x| m 2_3_3.1/2 i 1+%—_1)>1/2
W—Q )
- é (() [(1;%—‘—’)”—1]“}
1+4B(3;1) vz 1/2
() (o) T
G R ]

(A12)

w/m

[

Consider the expression

1/2 — 1/2
a3 a?

For any given value of m, this expression attains its
maximum value at z = 1 (the maximum value for the
allowed values of z, namely, z = 1.). Since for large m,
o is approximately §722 and § is approximately
(1/120)m4, then (A13) is approximately
v18/5 (w1 + (6/5)(z — 1))"1. We can bound
(A13) independently of m.

(A13)

The same type of considerations apply to both the
argument and coefficient in front of the logarithm term
on the right side of (A12), The argument of the logarithm
term is also bounded away from zero independent of m.
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Next consider the arctangent term on the right side of
(A12),

[(1 L 48—~ 1)) 12 1] -1/2
a2

Xt —1{77 <ZB>1/7|:<1 + f.lﬁ(i:__ll) 1/2 — 1] 1/2}
m\a a? :
(Al14)

It is easy to see that for z# 1, (A14) may be bounded by
a quantity depending on 2z but independent of m. If we
multiply (A14) by (A13) and retain just the leading terms

for z — 1 < 1, we have
1/2
. m— VY| [N ,
la(z — 1)]1/2 m\z —

z—-1K1,

By comparing this with Eq. (A12) and using the com-
ments following (A13), we see that
1/2 1
+ —“7]1(3)
m
(A15)

[Eq. (A13)][Eq. (A14)] =

fi()

_ 1 A
 wfe(z — 1)]V2 tanl[m(z—

where 7, (2) is a function of z and » that can be bounded
independent of m.

Next consider f/(z). In the interval [7/m, 7] we will
use the trigonometric identity

15 1 &,
—Z} cosjw = — E (etiw + e-ijw)
mj 2m j=1
_ 1 eiwl — gimw +omiw 1] — g imw
T om 1-—¢iw 1 —eriw
_sinfm + o _ 1
2m sin(w/2) 2m (A16)
Since
2x/m=sinx=<=x for0=ux=7/2 (A17)
then
sin(m + 3w 1 1 1

2m sin(w/2) 2m

2m sm(w/Z) 2m(2/7)(w/2)

1 1

= 2m(2/n)(w/2m) 2

Since z > 1, there will be no singularity in the inte-
grand of f;(z). From (A7) and (A16) we have

, 1 sinfm + 3w \?!
fi(2) = f d( 5 ———)

m 2m sin{w/2)

- l 1
w2+ 1/2m)
™ . . _ sinfm + 3w
x fn 1 4 [81n(w/2) / <sm(w/2) Py )]
_1-1/m , 1 1
Tz+1/2m w4+ 1/2m @mz + 1)

x f“;rmdw [sin(m + 3w /(sin(w/Z) - _sﬂf.”ii__é)_“’>

2mz + 1
(A18)
A very important result is that this last integral is 3
function of z and 7 that is bounded independent of m.
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The proof is involved and will be carried out in a
separate appendix (see Appendix C). Equation (A18) then
shows that

file) = _1_ + ng(2) ,
P4 m

(A19)

where 7, (z) is a function of z and m that is bounded in-
dependent of m.

By combining (A15) and (A19) we see that

1 T e N2l 1 nk)
rle(z — 1)]1/2 tanl[m(z-—l) }—Fz " m’

(A20)
where n(z) is a regular function of z and m is a neigh-
borhood of the real line greater than 1 and is bounded
independent of m. From the paragraph following (A5) we
see that

IR S I o - L B § 1
e [m< _1> ] + )| <

f'@) =

forz > 1, (A21)
APPENDIX B: THE FUNCTION £(z)
Herein, we will develop the function
f(z):lfﬂdw 1n [z ~—1—E cosjw] (B1)
T 70 mj=1

defined for all real z > 1, Some of the properties of f(z)
will also be derived.

For z 2> 1, f(z) asymptotically approaches In z, We
have that

1 7 1< .

l;fo dwln[z—;;jzz)l cosyw] —lnz.
~1 ol 1% ) ‘
..;] fO w In —E]El Cosjw

<1%I_£"dwln[1—§:|!=—1n[1—§J.

Equation (B2) shows that for large z, f(z) can differ
from Inz by a quantity at most of magnitude 1/z since
In(1 + x) = x when |x| < 1, Equation (B2) provides a
bound for f(z) that is independent of # for all real z > 1,
For z = 1, however, this bound is bad since f(z) may have
a logarithmic singularity atz = 1,

To determine the behavior of f(z) in the neighborhood

of z = 1 we follow the following route, Define the func-
tions

(B2)

filz) = lf dw In [z _1y Z) cosyw] (B3)
v m j=1
and
) 12 ,
folz) = = f,,/,‘,z“’ In l:z - Jg}l cos;w} . (B4)

Consider f,(z) first. In this interval we will use the
bounds (A10) to obtain

1 r/m
;fo dw Infz — 1 + aw? — Bw4]

= filz) = —f dw Infz — 1 + aw?]. (B5)
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After integrating, (B5) becomes
1 1 z—1 6 «
=18+~ |w In{>—= + —w?2 — wt
m nﬁ T [w n( B Bw w)
+ <gi+z-—1>1/2_£ 1/2
42 B 28
X tan"1! w a_2+?-*11/2_£_1/2
g2 B 28
+ 1@ a2+z_1 1/2]1/2
[2ﬁ 4p2 B ]
x In ([ + §i+i;l>1/2}1/2+w}
x{l:£+<gi+z—1>1/z}1/z_w}> —4w] alm
28 \482 B .
= filz) = 1 na + l—{w In <w2 +Z_‘_1>
m T o

—_ 1\ /
+ 2(2 1)1/2 ta_n—l[w< a >1 2] gl
a z—1 f o

and after substituting in the limits of integration this
simplifies to

1 2 74
" {ln(z —1+ am_ Bﬁ)
+£’£_a_1/2 1+éﬁ_(z_:_1_)_1/2_11/2
L ZB a?
X tan'1{ 1r<—2£>1/2/m |:<1 + iﬁ_(z_zfi)>1/2 _ 1}1/2}
@ a
m <ZB>1/2[1 N (1 N ﬂg@)l/z] 1/2
a
X In <{( )1/2[1 + (1 + 4_“&___1)>1/2]1/z l}/
2 = I
% o \1/2 1+<1+4_B(£;H 1/2 1/2w1}> .
28 = m
=fik) = l{ln(z 14 af—) + E’E(z — 1> 1/2
m mz T o
Xta.ﬂ_l _7_7_ 04 1/2 _ 9
m\z — 1 .

Both the upper and lower bounds of f(z) in (All) con-
tain a singularity at z = 1, This singularity occurs in
the argument of the arctangent function on both sides
though and since tan"tx - 7/2 as x = «, this singularity
poses no problem. Remembering that o is of order m?2
and B is of order m 4, we see from (B6) that f; (z) is of
the form

(BS)

[ =28k), z=1, (BY)
m

where {,(z) is a function of z and m» that can be bounded
independent of m.

Next consider f,(z). By using (A16) in (B4) we have
the following equation:
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1 1 sinm + 3w
fole) = m ‘j;r/mdw In <z * 2m 2m sin(w/2)>

=<1_7i’> m[;};]

1 T
+;fﬂ/mdwln<1—

sinfm + o ) ) (BS)

(2mz + 1) sin(w/2)

By the use of (A17), the last integral can be estimated.
We shall define this last integral as K(z). Then

|K(@@) < %‘ f":mdw ln{l - [1/(2mz + 1)(3—) (g)]} !
_2ife T N\ T
- 2 202mz + 1) 2 2(2mz + 1)

i
(e TN _ YL
2 (2mz +1) 2 2 2

n/m

1

-—— . B
2mz + 1 (B9)

The term with the largest magnitude in this expression
is the last one, But

——l—lnm<l Inm
2mz + 1 m

since z = 1 and this approaches zero as m — © almost
as fast as 1/m. Equation (B9) can clearly be bounded
independent of m and (B8) can be written in the form

f2(2) =z + (Inm/m)Cy@), z>1 (B10)
in which {,(z) is a function of z and m that can be bound-
ed independent of m.

Equations (B7) and (B10) combine to give

fz) =1nz + (Inm/m)(z). (B11)
§(z) is a function of z and m and is bounded independent
of m. Equations (B2) and (B11) together show that
(Inm/m){ (z) - 0 at least as fastas 1/zas 2~ =

APPENDIX C
Proof that
= lfﬂ dwi-sin(m + -l—)w si g_w B (C]_)
2 Jnm 2 ) 2mz + 1

is bounded. This is the definition of J. This function
arises from Eq. (A18),

We are concerned about the magnitude of the integrand

f (q+1/3)/(2m+ 1=
qn/Q2m+1)

A4, =

dx [[sin(zm + 1)x] (sinx —

X [[sin(Zm +1)x] (sinx.— EM_;"I_)">-1:'

2mz + 1

J. Math. Phys., Vol. 15, No. 10, October 1974

2mz + 1

‘ f Kg+1)/@m+1 =
Kg+2/3/@m+1)n

1816

since at the lower limit, w = 7/m, the denominator take
the value

@ sin(m + 3)(w/m) = sin"— +
m 2mz + 1 2m

I VR S
2m 2mz + 1

We want to assure ourselves that the integral does not
make any contribution of order m.

sin(r/2m)
2mz + 1

sin

First make the change of variable w = 2x. Then J be-
comes,

/2 i
J= "% ax|sin@m + 1)x| |siny — SBEm + 1z
©/2m 2mz + 1
(C2)
Define the positive term sequence A4, by

q

(g+Dn/(2m+1) 5 -1
fr e dx[sin(2m+1)x:l[sinx—w] ’

qn/(2m+1) 2mz+1
q= 1,2,...,m. (C3)
Then (C1) is equal to
m
J =2 (1494, +Cy +C,, (o)
g=1
where
_ m/2m
C1=— f7r/(2m+1)dx
7 : -1
x| sin(2m + 1)x sinx——-—————sm(zm + 1) ’
] 2mz +1
[Gn+Du/@m+ 1)]
C,=~— fn/z dx
7 : 1-1
x |sin(2m + 1)x siny— Sin@m + D | ©
| 2mz + 1

By letting x = [1/(2m + 1)] + € we can easily estimate
C,. For C,,, the change of variable 7/2 + € is useful.
We obtain

s D™

2m + 1

&

T
am)? 1—mz), C,

o (C5)

From (C4) and (C5) we see that the convergence of the
integral in (C1) depends on the convergence of the series

Su= 2 (- )4, . (C6)
q=1

The first terms of the series are the largest since the
denominator in the integral is the largest. Consequently
we will have to show that their sum is bounded. What is
meant by first terms will be made precise.

From (C3) we can write

(g+1/3)/Qm+ 1w

sin(2m + 1)x\? (g +2/ 3/2m+ Vin
sin(am + 1)x + ] f[

2mz + 1

dx l:[sin(Zm + 1)x] <sinx — _s_ig_(2_m_j_1)_:i>'1:| ,, (C7)
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(g +1/3)/2m+1}x . . qm 1 -1
2m + 1 1 —
Aq < |fq1r/(2nn1) dx[(sm( " )x> <Slt‘2m +1 2mz + 1) ]‘
g+2/3)/2m+ 1)) .
+
\f[(q+1/3)/(2m+1)]1r dx [(sm(Zm 1)> <Sll’l 2mz + 1) :I |
g +1)/(2m+ i i + 2 1
| oz oom e % [(sm(zm + 1’) ( 1" ame b 1> |
1 2 -1
1 51’—sin qr__ 1 + sinq+3 q+3 _ 1
Som+ 1|2\ 2m+1 2mz+1 am + 1" 2mz+ Mom+ 1" 2mz+1
1 . qm -1 . g+3 ( q+3 -1
= =|{@m+1 - +2((2m + 1) sin T — 2m + 1) sin*—2_ 7 —
[(‘m Vo + 1 B) <( o m + 1 ) 2m+1 "
(C8)
where 8 = (2m + 1)/(2mz + 1). B is less than or equal r in (C8), we have
tolfor allrealz =1,
-1
If we use LY (@em +1) sin—9"— —
1 2 2m + 1
q+3
-1
2m + 1 . \ 2[(Zmﬂ)sin 9 (g~ T cos—27—
= sin—47 s__3 o517 37 2m + 1 3 2m + 1
om +1  2m + 1 2m+1 2m+1 -
~ gin_9d7 7 cos—47 + [(2m+ 1) sinz qan __< Y os2 qm 1)] }
2m+1 2m+1 2m+1’ m +1 m +
sin__u;%._ ~ (l" %1' s q'" > Aq' (Cg)
2m + 1 2m +1 2m + 1 2m + 1
J We will call the left-hand side of this expression U,.

The error introduced into the denominators in (C9) by the approximations

1 1 2
37 3T 3

sin = , sin LN , s—2—— =1 cos =1,
2m +1 2m + 1 2m +1 2m+1 2m + 1 2m + 1

is of order (1/m)3 in the first case and of order (1/m)2 in the second case.

From Eq. (C7) we can proceed in the opposite direction as (C8) and obtain

Kg+1/3Y/Cm+Lin q + 3 1 [(q+2/3)/(2m+1)]n
an/(zmq) dx [[Sln (2m + 1)x] (smg T 2mzal | Jiari/ov@mine

-1
q+ 3 " [(q*l)/(2m+1)]n dx . g+1 1 )
[[sm(Zm +1)x]< Py + 2mz n 1) } l | Kq+2/3Y@ms Vi [sin(2m +1)x] sm2m ki l

We can perform a series of steps analogous to those [

leading to (C9) to obtain Uz < L,
N T
1 . q+1 or (by introducing ¢ =

A > = 2m + 1) sin i

‘ 2{{( S 1 2m +1

_z q+1 11 1
*(’3 3”°szm+1">] 2\@m + 1) sing + )y — B
2l@m+1)sin-9F 1 4 . g+l Tz 1 . 1 1
7 — 37 CO8 7 i —_ 18 _ L
o 1" (B Py— (2m + 1) sin(q + 1)Y— [B — 57 cos(g + 1)¥/]

+1
+1

+ 2m + 1) sin—2 =L
(@n+ vt .

)

Equations (C9).and (C10) give upper and lower bounds
for A We wish to find for which values of g, if any, the
upper bound on the (g + 1)th term is smaller than the
gth term, The series formed by a sum over this set of
¢'s then forms an alternating series with the magnitude
of each term decreasing. In symbols, we wish to find a
range of ¢'s satisfying
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" 1
2m + 1) sin(g + )y —

<L 1
2\(2m + 1) sin{g + 1)y + [ —
+ 2

(2m + 1) sinfg + )y + [B —
s

* 2m + 1) sin{g + )Yy + B

(8 — 37 coslg + 1)tl/>

27 cosfg + 1)y

$7 cos(g + 1)¢]
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or upon rearranging and collecting terms

1 1
<(2m +1)sing+ DY —B (2m + 1) sinfg + 1)y + ;3)

1
<
((Zm + 1) sin(g + 1)¢ + [B — %7 cos(g + 1)7]

1
(2m + 1) sin(g + 1)y — [B — 37 cos(g + 1)4/])

+ 2 1
(2m + 1) sinfg + 1) + (8 — 17 cos(g + 1)y)

1
(2m + 1) sing + 1) — [ — 37 cos(g + 1)1[/]) .
A simple calculation then gives

28
(2m + 1)2 sin2(g + 1)y — B2

2[%7 cos(g + 1)¥ — 8]
(2m + 1)2 sin2(g+ 1)y — [B — 37 cos(g + 1)y]?
, 2[37 coslg + 1)y — 8]
“(2m + 1)2 sin2(q + 1)y — [B — 37 cos(g + 1)y]2”

This equation will be satisfied if the following two
conditions are simultaneously satisfied:

28
(2m + 1)2 sin2(g + 1)y — B2

2[37 cos{g + 1)y — B]
(2m + 1)2 sin2(g + 1)y — [37 cos(g + 1)y — BJ2

and
2[5 cos(q + 1 — ]
(2m + 1)2 sin2(g + 1) — [37 cos(q + W — BJ?

> 0.

The first is satisfied if 28 < 2[37 coslg + 1)y — 8]
or 8 < §7 cos(g + 1)y

The second is satisfied by the same condition, Since
B = 1,then if 1+ 7 cos{g + 1)y > 1, the condition will
always be satisfied irregardless of the value of z.

The condition
cos[lg + 1)/(2m + L)]a > 7/3

implies that the argument of the cosine will be less than
about . 30.

(@ + 1)/@m + H]Ir S .30

or

q S L 19m.

This is a significant portion of the terms of the series,
From previous remarks we see that
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.19m
—4, < 3 <—A +4,<0.
g=1

From (C9) we have that

1 1r .
- 2m + 1) sin——— —

2{(( ) 2m + 1 ﬁ)

. -1
_— — T cos—T"
2m + 1 3 2m + 1

-1

T 27 T
— — (B —— cos———
2m + 1 ( 3 2m+1>] }

—l{ 1, I }<-—A
2ln—p  (4a/3)—p (51/3)—p o

+2[(2m+1)sin

+|:(2m+1)sin

I

This is bounded irrespective of 7z even when g attains
its maximum value 1,

The rest of the terms in the sum (C6) are represented
by the integral from about x = ,30 on up to x = #/2. It
is easy to show that this integral is bounded for all m
since

U;/de [[sin(Zm + 1)x] (sinx _sin@m + 1) x)ﬂl] \

2mz + 1

-1 .
<<sin(.3) S ) 57 @

2mz + 1

-1
X [511 (sin(. 3) — —2—”71_'_—1) ]
7. 1 \1
= [E(Sln(. 3) —"27”—+'I> ]-

Therefore, the integral (C1) has a magnitude on the
order of m% = 1 and can be bounded independent of m.
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Erratum: Two-magnon bound states in Heisenberg ferromagnets

[J. Math. Phys. 14, 1837 (1973)]

A. W. Saénz and W. W. Zachary

Naval Research Laboratory, Washington, D.C. 20375
(Received 24 May 1974)

We wish to correct a number of typographical errors
which appeared in the above paper.

(1) In the ninth line of the second paragraph of the
first column on p. 1837, Silbergliti should read
Silberglitt.

(2) A negative sign should be inserted in front of the
first term on the right side of Eq. (2.1).

(3) In the third line following the definition of the set
P, in the second column on p. 1838, the expression
A+ 2mA(y) should read ¥+ 2m(¥).

(4) In the fourth line following Eq. (2.8) the comma
should be deleted from the expression Z,, (T').

(5)In Eq. (2.14) the argument of the first cosine
factor should read 3T -R,.

(6) In the fourth line following Eg. (2.16) the negative
sign should be replaced by an equality sign.

(7) In the first term on the right side of Eq. (2.21) ¢
should have a zero subscript.

(8) The second line of Eq. (2.22) should read
£{=-— ‘/é‘ 77005(%1—" Ri) £o+ g{-

(9) In the seventh line of the statement of Property (1)
in the second column of p. 1840, the symbol E_ (T}
should read EX) (T,).

(10) In Eq. (2.26) the symbol ¢ should be replaced
by oK.
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(11) In Eq. (2.30) the upper limit of the summation
in the denominator should read » instead of «.

(12) In Eq. (2.34) the lower limit of the summation in
the denominator should read ! instead of :.

(13) In the second line of the last paragraph in the
second column on p. 1842, the first “of” should read

[ 39

or- .

(14) The equation appearing in the fourth line follow-
ing Eq. (2.40) should read

K(E,T)y,(E,T)=k, (E,T),(E,T).

(15) In the statement of Theorem 2.1 on p. 1843, the
reference to Eq. (2.25) should refer instead to
Eq. 2.15).

(16) The inequality following the reference to Jensen’s
inequality on p. 1844 should read
n pla n
[Tqu(Eo’ ro)]p/q: <:L’:0 kuq(Eo; ro)) = Q ‘ kub(Eoy ro)l .
(17) The exponents p/q occurring in the proof of
Theorem 3.5 should be p —g.

(18) The summation in Eq. (3.10) should have » as an
upper limit,

(19) In the last line of the second column on p. 1847
the inequality should read

TrK3(T') > TrK%(T).
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